首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83432篇
  免费   7026篇
  国内免费   5520篇
  2024年   155篇
  2023年   968篇
  2022年   2241篇
  2021年   3826篇
  2020年   2495篇
  2019年   3034篇
  2018年   3029篇
  2017年   2181篇
  2016年   3045篇
  2015年   4861篇
  2014年   5628篇
  2013年   6316篇
  2012年   7344篇
  2011年   6735篇
  2010年   4098篇
  2009年   3655篇
  2008年   4406篇
  2007年   3922篇
  2006年   3390篇
  2005年   2911篇
  2004年   2478篇
  2003年   2148篇
  2002年   1881篇
  2001年   1656篇
  2000年   1640篇
  1999年   1508篇
  1998年   927篇
  1997年   833篇
  1996年   833篇
  1995年   759篇
  1994年   707篇
  1993年   542篇
  1992年   835篇
  1991年   671篇
  1990年   608篇
  1989年   534篇
  1988年   426篇
  1987年   363篇
  1986年   340篇
  1985年   307篇
  1984年   224篇
  1983年   201篇
  1982年   114篇
  1981年   118篇
  1980年   86篇
  1979年   147篇
  1978年   84篇
  1977年   95篇
  1975年   111篇
  1974年   116篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.  相似文献   
82.
83.
84.
85.
86.
Previously, it was found that the ancient Chinese remedy of Suanzaorentang could be a promising anxiolytic drug (Chen and Hsieh, 1985a, Chen and Hsieh, 1985b). To understand the mechanism of the action of Suanzaorentang, the effects of Suanzaorentang on behavior changes and central monoamines and their metabolites were studied in rats. It was found that Suanzaorentang significantly (1) prolonged the period from the onset of clonic to tonic convulsions induced by pentylenetetrazol or picrotoxin, (2) prolonged the sleep duration induced by hexobarbital, (3) reduced locomotor activity, (4) enhanced the hypomotility induced by alpha-MT, (5) reduced the locomotor stimulation produced by levodopa plus benserazide, and (6) reduced central HVA, VMA, and 5-HIAA, but had no significant effects on central DA, NA, and 5-HT. These facts implied that Suanzaorentang decreased the turnover rate of central monoamines and central catecholaminergic activity.  相似文献   
87.
88.
Nucleotide sequence of the mouse ornithine decarboxylase gene.   总被引:6,自引:3,他引:3  
  相似文献   
89.
To investigate the influence of vasomotor tone and vessel compliance on pulmonary segmental vascular resistance, we determined the longitudinal distribution of vascular pressures in 15 isolated blood perfused lungs of newborn lambs. We measured pulmonary arterial and left atrial pressures and by micropuncture the pressures in 20- to 80-micron-diam subpleural arterioles and venules, both before and after paralyzing the vasculature with papaverine hydrochloride. In five lungs we also determined the microvascular pressure profile during reverse perfusion. In lungs with baseline vasomotor tone, approximately 32% of the total pressure drop was in arteries, approximately 32% in microvessels, and approximately 36% in veins. With elimination of vasomotor tone, arterial and venous resistances decreased to one-fifth and one-half of base-line values, respectively, indicating that vasomotor tone contributed mainly toward arterial resistance. During reverse perfusion, the pressure drop in veins was similar to that in arteries during forward perfusion, suggesting that the compliance of arteries and veins is comparable. We conclude that vascular tone and compliance are important factors that determine the distribution of segmental vascular resistance in lungs of the newborn.  相似文献   
90.
The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg2+ or Mn2+ for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4–9-fold reductions in kcat/Km relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号