首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167555篇
  免费   13526篇
  国内免费   12543篇
  193624篇
  2024年   326篇
  2023年   1967篇
  2022年   4473篇
  2021年   7649篇
  2020年   5228篇
  2019年   6450篇
  2018年   6273篇
  2017年   4566篇
  2016年   6536篇
  2015年   9829篇
  2014年   11474篇
  2013年   12515篇
  2012年   14952篇
  2011年   13676篇
  2010年   8526篇
  2009年   7566篇
  2008年   8980篇
  2007年   8060篇
  2006年   7051篇
  2005年   5757篇
  2004年   4921篇
  2003年   4425篇
  2002年   3801篇
  2001年   3263篇
  2000年   3120篇
  1999年   2954篇
  1998年   1787篇
  1997年   1714篇
  1996年   1663篇
  1995年   1452篇
  1994年   1369篇
  1993年   1080篇
  1992年   1577篇
  1991年   1227篇
  1990年   1033篇
  1989年   936篇
  1988年   746篇
  1987年   674篇
  1986年   572篇
  1985年   559篇
  1984年   359篇
  1983年   349篇
  1982年   207篇
  1981年   199篇
  1980年   140篇
  1979年   220篇
  1977年   151篇
  1975年   166篇
  1974年   168篇
  1973年   131篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.

Background

Eosinophilia plays the major role in the pathogenesis of asthma and correlates with the up‐regulation of eotaxin, which, together with interleukin (IL)‐5, is important for differentiation, chemo‐attraction, degranulation, and survival of eosinophils in local tissue. In a previous study, we found that administration of lentivirus‐delivered short hairpin RNA (shRNA) to suppress the expression of IL‐5 inhibited airway inflammation. The present study aimed to investigate the role of eotaxin shRNA and the synergistic effect of eotaxin and IL‐5 shRNAs on airway inflammation in an ovalbumin (OVA)‐induced murine model of asthma.

Methods

Lentivirus‐delivered shRNAs were used to suppress the expression of eotaxin and/or IL‐5 in local tissue in an OVA‐induced murine asthma model.

Results

Intra‐tracheal administration of lentivirus containing eotaxin shRNA expressing cassette (eoSEC3.3) efficiently moderated the characteristics of asthma, including airway hyper‐responsiveness, cellular infiltration of lung tissues, and eotaxin and IL‐5 levels in bronchio‐alveolar lavage fluid. Administration of lentiviruses expressing IL‐5 or eotaxin shRNAs (IL5SEC4 + eoSEC3.3) also moderated the symptoms of asthma in a mouse model.

Conclusions

Local delivery of lentiviruses expressing IL‐5 and eotaxin shRNAs provides a potential tool in moderating airway inflammation and also has the potential for developing clinical therapy based on the application of shRNAs of chemokines and cytokines involved in T helper 2 cell inflammation and eosinophilia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
92.

Background  

Many molecules are flexible and undergo significant shape deformation as part of their function, and yet most existing molecular shape comparison (MSC) methods treat them as rigid bodies, which may lead to incorrect shape recognition.  相似文献   
93.
The BNIP-2 and Cdc42GAP homology (BCH) domain is a novel regulator for Rho GTPases, but its impact on p50-Rho GTPase-activating protein (p50RhoGAP or Cdc42GAP) in cells remains elusive. Here we show that deletion of the BCH domain from p50RhoGAP enhanced its GAP activity and caused drastic cell rounding. Introducing constitutively active RhoA or inactivating GAP domain blocked such effect, whereas replacing the BCH domain with endosome-targeting SNX3 excluded requirement of endosomal localization in regulating the GAP activity. Substitution with homologous BCH domain from Schizosaccharomyces pombe, which does not bind mammalian RhoA, also led to complete loss of suppression. Interestingly, the p50RhoGAP BCH domain only targeted RhoA, but not Cdc42 or Rac1, and it was unable to distinguish between GDP and the GTP-bound form of RhoA. Further mutagenesis revealed a RhoA-binding motif (residues 85-120), which when deleted, significantly reduced BCH inhibition on GAP-mediated cell rounding, whereas its full suppression also required an intramolecular interaction motif (residues 169-197). Therefore, BCH domain serves as a local modulator in cis to sequester RhoA from inactivation by the adjacent GAP domain, adding to a new paradigm for regulating p50RhoGAP signaling.  相似文献   
94.
Iron is an essential element for diverse biological functions. In mammals, the majority of iron is enclosed within a single prosthetic group: heme. In metazoans, heme is synthesized via a highly conserved and coordinated pathway within the mitochondria. However, iron is acquired from the environment and subsequently assimilated into various cellular pathways, including heme synthesis. Both iron and heme are toxic but essential cofactors. How is iron transported from the extracellular milieu to the mitochondria? How are heme and heme intermediates coordinated with iron transport? Although recent studies have answered some questions, several pieces of this intriguing puzzle remain unsolved.  相似文献   
95.
Two analogs of human beta-endorphin (beta-EP) which contain cystine bridges, [Cys15-Cys26,Phe27,Gly31]-beta-EP (I) and [Cys16-Cys26,Phe27,Gly31]-beta-EP (II), were synthesized by the solid-phase method. Peptides I and II were shown to contain 2-2.5 times the opiate receptor binding activity of beta-endorphin. We also synthesized two analogs with reduced alkylated cysteine residues and these peptides, [Arg9,19,24,28,29 Cys(Cam)11,26,Phe27,Gly31] and [Arg9,19,24,28,29,Cys-(Cam)12,26,Phe27,Gly31], were shown to have approximately the same opiate receptor activity as beta-endorphin.  相似文献   
96.
Abstract Field trials by sex pheromone of aphid to trap peach aphids Myzus persicae have been carried out in 1995 and in 1996. Suitable time and the effect of ratio of two components nepetalactone and nepetalactol to apply the lure have been observed.  相似文献   
97.
A two-chain, disulfide linked, insulin-like compound embodying the A-domain of insulin-like growth factor I (IGF-I) and the B-chain of insulin has been synthesized and characterized with respect to insulin-like biological activity and growth-promoting potency. The compound displays a potency of ca. 41% relative to insulin in assays for insulin-like activity (e.g., lipogenesis) but significantly higher activity than insulin, ca. 730% relative to insulin, in growth factor assays (e.g., thymidine incorporation). The compound is, however, a less potent growth factor than IGF-I itself, ca. 26.5% relative to IGF-I, and is not recognized by IGF carrier proteins. We conclude that structural features contained in the A-domain of IGF-I are primarily responsible for the growth-promoting ability displayed by IGF-I, while features in the B-domain are responsible for recognition by IGF carrier proteins.  相似文献   
98.
99.
100.
The intracellular pathway following receptor-mediated endocytosis of cholera toxin was studied using brefeldin A (BFA), which inhibited protein secretion and induced dramatic morphological changes in the Golgi region. In both mouse Y1 adrenal cells and CHO cells, BFA at 1 μg/ml caused a 80–90% inhibition of the cholera toxin (CT)-elevation of intracellular cAMP. The inhibition of the cytotoxicity of CT by BFA was also observed in a rounding assay of Y1 adrenal cells. The inhibition of CT cytotoxicity by BFA was dose dependent, with the ID50 value similar to the LD50 of BFA in Y1 adrenal cells. Binding and internalization of [125I]-cholera toxin in Y1 adrenal cells was not affected by BFA. Unlike the BFA-sensitive cell lines such as Y1 adrenal and CHO cells, BFA at 1 μg/ml did not inhibit the cytotoxicity of CT in PtK1 cells, of which the Golgi structure was BFA-resistant. These results strongly suggest that a BFA-sensitive Golgi is required for the protection of CT cytotoxicity by BFA. In contrast, elevation of the intracellular cAMP by forskolin, which acts directly on the plasma membrane adenylate cyclase, was not affected by BFA. These observations indicate that the intoxication of target cells by CT requires an intact Golgi region for its intracellular trafficking and/or processing. In this respect, CT shares a common intracellular pathway with ricin, Pseudomonas toxin, and modeccin, even though their structures and modes of action are very different. © 1993 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号