首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   509篇
  免费   62篇
  571篇
  2024年   1篇
  2023年   7篇
  2022年   19篇
  2021年   32篇
  2020年   22篇
  2019年   13篇
  2018年   22篇
  2017年   15篇
  2016年   34篇
  2015年   35篇
  2014年   40篇
  2013年   44篇
  2012年   43篇
  2011年   40篇
  2010年   25篇
  2009年   23篇
  2008年   29篇
  2007年   19篇
  2006年   11篇
  2005年   14篇
  2004年   8篇
  2003年   5篇
  2002年   12篇
  2001年   8篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   8篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1974年   1篇
  1938年   1篇
排序方式: 共有571条查询结果,搜索用时 15 毫秒
91.
Pathogen infection triggers host innate defenses which may result in the activation of regulated cell death (RCD) pathways such as apoptosis. Given a vital role in immunity, apoptotic effectors are often counteracted by pathogen-encoded antagonists. Mounting evidence indicates that programmed necrosis, which is mediated by the RIPK3/MLKL axis and termed necroptosis, evolved as a countermeasure to pathogen-mediated inhibition of apoptosis. Yet, it is unclear whether components of this emerging RCD pathway display signatures associated with pathogen conflict that are rare in combination but common to key host defense factors, namely, rapid evolution, viral homolog (virolog), and cytokine induction. We leveraged evolutionary sequence analysis that examines rates of amino acid replacement, which revealed: 1) strong and recurrent signatures of positive selection for primate and bat RIPK3 and MLKL, and 2) elevated rates of amino acid substitution on multiple RIPK3/MLKL surfaces suggestive of past antagonism with multiple, distinct pathogen-encoded inhibitors. Furthermore, our phylogenomics analysis across poxvirus genomes illuminated volatile patterns of evolution for a recently described MLKL viral homolog. Specifically, poxviral MLKLs have undergone numerous gene replacements mediated by duplication and deletion events. In addition, MLKL protein expression is stimulated by interferons in human and mouse cells. Thus, MLKL displays all three hallmarks of pivotal immune factors of which only a handful of factors like OAS1 exhibit. These data support the hypothesis that over evolutionary time MLKL functions—which may include execution of necroptosis—have served as a major determinant of infection outcomes despite gene loss in some host genomes.  相似文献   
92.
93.
Tychoparthenogenesis, a form of asexual reproduction in which a small proportion of unfertilized eggs can hatch spontaneously, could be an intermediate evolutionary link in the transition from sexual to parthenogenetic reproduction. The lower fitness of tychoparthenogenetic offspring could be due to either developmental constraints or to inbreeding depression in more homozygous individuals. We tested the hypothesis that in populations where inbreeding depression has been purged, tychoparthenogenesis may be less costly. To assess this hypothesis, we compared the impact of inbreeding and parthenogenetic treatments on eight life‐history traits (five measuring inbreeding depression and three measuring inbreeding avoidance) in four laboratory populations of the desert locust, Schistocerca gregaria, with contrasted demographic histories. Overall, we found no clear relationship between the population history (illustrated by the levels of genetic diversity or inbreeding) and inbreeding depression, or between inbreeding depression and parthenogenetic capacity. First, there was a general lack of inbreeding depression in every population, except in two populations for two traits. This pattern could not be explained by the purging of inbreeding load in the studied populations. Second, we observed large differences between populations in their capacity to reproduce through tychoparthenogenesis. Only the oldest laboratory population successfully produced parthenogenetic offspring. However, the level of inbreeding depression did not explain the differences in parthenogenetic success between all studied populations. Differences in development constraints may arise driven by random and selective processes between populations.  相似文献   
94.
95.
Belbahri L  Calmin G  Mauch F  Andersson JO 《Gene》2008,408(1-2):1-8
Lateral gene transfer (LGT) can facilitate the acquisition of new functions in recipient lineages, which may enable them to colonize new environments. Several recent publications have shown that gene transfer between prokaryotes and eukaryotes occurs with appreciable frequency. Here we present a study of interdomain gene transfer of cutinases -- well documented virulence factors in fungi -- between eukaryotic plant pathogens Phytophthora species and prokaryotic bacterial lineages. Two putative cutinase genes were cloned from Phytophthora brassicae and Northern blotting experiments showed that these genes are expressed early during the infection of the host Arabidopsis thaliana and induced during cyst germination of the pathogen. Analysis of the gene organisation of this gene family in Phytophthora ramorum and P. sojae showed three and ten copies in tight succession within a region of 5 and 25 kb, respectively, probably indicating a recent expansion in Phytophthora lineages by gene duplications. Bioinformatic analyses identified orthologues only in three genera of Actinobacteria, and in two distantly related eukaryotic groups: oomycetes and fungi. Together with phylogenetic analyses this limited distribution of the gene in the tree of life strongly support a scenario where cutinase genes originated after the origin of land plants in a microbial lineage living in proximity of plants and subsequently were transferred between distantly related plant-degrading microbes. More precisely, a cutinase gene was likely acquired by an ancestor of P. brassicae, P. sojae, P. infestans and P. ramorum, possibly from an actinobacterial source, suggesting that gene transfer might be an important mechanism in the evolution of their virulence. These findings could indeed provide an interesting model system to study acquisition of virulence factors in these important plant pathogens.  相似文献   
96.
Prothoracicotropic hormone (PTTH) is a homodimeric brain peptide hormone that positively regulates the production of ecdysteroids by the prothoracic gland of Lepidoptera and probably other insects. PTTH was first purified from heads of adult domestic silkworms, Bombyx mori. Prothoracic glands of Bombyx and Manduca sexta undergo apoptosis well before the adult stage is reached, raising the recurring question of PTTH function at these later stages. Because Bombyx has been domesticated for thousands of years, the possibility exists that the presence of PTTH in adult animals is an accidental result of domestication for silk production. In contrast, Manduca has been raised in the laboratory for only five or six decades. The present study found that Manduca brains contain PTTH at all stages examined post‐prothoracic gland apoptosis, i.e., pharate adult and adult life, and that PTTH‐dependent changes in protein phosphorylation and protein synthesis were observed in several reproductive and reproduction‐associated organs. The data indicate that PTTH indeed plays a role in non‐steroidogenic tissues and suggest possible future avenues for determining which cellular processes are being so regulated. © 2009 Wiley Periodicals, Inc.  相似文献   
97.
Plant immune responses to pathogens are often associated with enhanced production of reactive oxygen species (ROS), known as the oxidative burst, and with rapid hypersensitive host cell death (the hypersensitive response, HR) at sites of attempted infection. It is generally accepted that the oxidative burst acts as a promotive signal for HR, and that HR is highly correlated with efficient disease resistance. We have identified the Arabidopsis mutant rph1 ( resistance to Phytophthora 1 ), which is susceptible to the oomycete pathogen Phytophthora brassicae despite rapid induction of HR. The susceptibility of rph1 was specific for P. brassicae and coincided with a reduced oxidative burst, a runaway cell-death response, and failure to properly activate the expression of defence-related genes. From these results, we conclude that, in the immune response to P. brassicae , (i) HR is not sufficient to stop the pathogen, (ii) HR initiation can occur in the absence of a major oxidative burst, (iii) the oxidative burst plays a role in limiting the spread of cell death, and (iv) RPH1 is a positive regulator of the P. brassicae -induced oxidative burst and enhanced expression of defence-related genes. Surprisingly, RPH1 encodes an evolutionary highly conserved chloroplast protein, indicating a function of this organelle in activation of a subset of immune reactions in response to P. brassicae . The disease resistance-related role of RPH1 was not limited to the Arabidopsis model system. Silencing of the potato homolog StRPH1 in a resistant potato cultivar caused susceptibility to the late blight pathogen Phytophthora infestans .  相似文献   
98.
Coxsackieviruses are significant human pathogens, and the neonatal central nervous system (CNS) is a major target for infection. Despite the extreme susceptibility of newborn infants to coxsackievirus infection and viral tropism for the CNS, few studies have been aimed at determining the long-term consequences of infection on the developing CNS. We previously described a neonatal mouse model of coxsackievirus B3 (CVB3) infection and determined that proliferating stem cells in the CNS were preferentially targeted. Here, we describe later stages of infection, the ensuing inflammatory response, and subsequent lesions which remain in the adult CNS of surviving animals. High levels of type I interferons and chemokines (in particular MCP-5, IP10, and RANTES) were upregulated following infection and remained at high levels up to day 10 postinfection (p.i). Chronic inflammation and lesions were observed in the hippocampus and cortex of surviving mice for up to 9 months p.i. CVB3 RNA was detected in the CNS up to 3 months p.i at high abundance (∼106 genomes/mouse brain), and viral genomic material remained detectable in culture after two rounds of in vitro passage. These data suggest that CVB3 may persist in the CNS as a low-level, noncytolytic infection, causing ongoing inflammatory lesions. Thus, the effects of a relatively common infection during the neonatal period may be long lasting, and the prognosis for newborn infants recovering from acute infection should be reexplored.Early damaging events on the central nervous system (CNS) by infection can result not only in severe physical and intellectual disability but also in less obvious neurological deficits. For example, children who were thought to have fully recovered from neonatal CNS virus infections exhibited some deficiency in scholastic performance (12). Thus, the enduring harmful effects of childhood infections on the CNS may be greatly underappreciated. Picornaviruses including polioviruses, coxsackieviruses, and other unclassified enteroviruses frequently infect the CNS (60). Although these infections often are considered acute and self-limiting, evidence is emerging that these viruses—or at least the viral RNAs—may persist for months or years after the initial infection. For example, ∼50 years after the primary infection, a large percentage (∼30%) of polio victims are now experiencing new symptoms (postpolio syndrome), which some investigators have correlated with the presence of viral RNA in the CNS (43). Worldwide distribution of enterovirus infection is revealed by the detection of enterovirus-specific antibodies in the serum of approximately 75% of individuals within developed countries. For example, in 1996, approximately 10 to 15 million diagnosed cases of enterovirus infection occurred in the United States alone (49). Few studies have been done to determine if enteroviruses, or their close relatives, have the ability to persist and cause long-term damage in the CNS (10, 56) or whether previous infection of neurons may indirectly lead to the degeneration of aging motor neurons.Coxsackievirus, a member of the enterovirus genus, is a fairly frequent childhood infection and may cause severe morbidity and mortality in humans, predominantly in the very young. Infants infected with coxsackievirus have been shown to be extremely susceptible to meningitis and encephalitis. Severe demyelinating diseases may occur following infection, including acute disseminated encephalomyelitis (18) and acute transverse myelitis (27). Also, a number of delayed neuropathologies have been associated with previous coxsackievirus infection, including schizophrenia (47, 52), encephalitis lethargica (16), and amyotrophic lateral sclerosis (62, 63). If human neurotropic viruses persist, they could provide a chronic inflammatory stimulus, leading to regional cytokine induction and activation of autoreactive T cells through molecular mimicry and bystander activation (32, 45). This may be especially true for viruses, such as coxsackievirus, which have the ability to infect stem cells (24) and neurons (1). Recently, we have shown that coxsackievirus B3 (CVB3) targets proliferating cells in regions of the neonatal CNS supporting neurogenesis (24). Nonetheless, infected migratory neuronal progenitor cells were able to differentiate into mature neurons. Many neurons eventually underwent caspase-3-mediated apoptosis at later stages of disease (22).Intriguingly, viral RNA was detected in the CNS of surviving pups in the absence of infectious virus for up to 30 days postinfection (p.i.). The detection of CVB3 RNA in target tissues may have great significance for CVB3-mediated disease, given that the long-term presence of replication-restricted CVB3 RNA in the heart (generated using transgenic techniques) has been directly associated with dilated cardiomyopathy in a previous study by Wessely et al. (59). We were therefore interested in expanding this notable observation in the CNS by significantly increasing the number of animals examined, more precisely quantifying the amounts of viral RNA, and determining how long viral RNA might persist in the CNS. In addition, we thoroughly assessed the nature and degree of neuropathology in surviving animals harboring CVB3 RNA. These studies may help predict the lasting neurological sequelae of a previous viral infection on the developing host.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号