首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1402篇
  免费   141篇
  2023年   4篇
  2022年   23篇
  2021年   43篇
  2020年   12篇
  2019年   26篇
  2018年   36篇
  2017年   22篇
  2016年   46篇
  2015年   70篇
  2014年   59篇
  2013年   80篇
  2012年   112篇
  2011年   86篇
  2010年   66篇
  2009年   60篇
  2008年   90篇
  2007年   86篇
  2006年   77篇
  2005年   68篇
  2004年   70篇
  2003年   69篇
  2002年   71篇
  2001年   9篇
  2000年   10篇
  1999年   16篇
  1998年   14篇
  1997年   11篇
  1996年   13篇
  1995年   9篇
  1994年   7篇
  1993年   12篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   9篇
  1984年   7篇
  1983年   5篇
  1982年   12篇
  1981年   10篇
  1979年   7篇
  1978年   8篇
  1976年   6篇
  1975年   4篇
  1973年   6篇
  1970年   6篇
  1969年   3篇
  1966年   4篇
  1961年   4篇
排序方式: 共有1543条查询结果,搜索用时 234 毫秒
211.
212.
The glycerophosphoinositols are diffusible phosphoinositide metabolites reported to modulate actin dynamics and tumour cell spreading. In particular, the membrane permeant glycerophosphoinositol 4-phosphate (GroPIns4P) has been shown to act at the level of the small GTPase Rac1, to induce the rapid formation of membrane ruffles. Here, we have investigated the signalling cascade involved in this process, and show that it is initiated by the activation of Src kinase. In NIH3T3 cells, exogenous addition of GroPIns4P induces activation and translocation of Rac1 and its exchange factor TIAM1 to the plasma membrane; in addition, in in-vitro assays, GroPIns4P favours the formation of a protein complex that includes Rac1 and TIAM1. Neither of these processes involves direct actions of GroPIns4P on these proteins. Thus, through the use of specific inhibitors of tyrosine kinases and phospholipase C (and by direct evaluation of kinase activities and inositol 1,4,5-trisphosphate production), we show that GroPIns4P activates Src, and as a consequence, phospholipase Cgamma and Ca(2+)/calmodulin kinase II, the last of which directly phosphorylates TIAM1 and leads to TIAM1/Rac1-dependent ruffle formation.  相似文献   
213.
AIM: IL-21 is the most recently identified member of the IL-2 cytokine family. Here we studied the therapeutic efficacy of IL-21-gene-modified cells (Neuro2a/IL-21) in a syngeneic metastatic neuroblastoma (NB) model. MATERIALS AND METHODS: Neuro2a/IL-21 cells were tested as subcutaneous (sc) vaccine both in prophylactic and therapeutic settings. Depletion studies, cytotoxicity assay and immunohistochemical analyses were carried out to evaluate the mechanisms involved in tumor rejection. RESULTS: When injected sc in syngeneic A/J mice viable Neuro2a/IL-21 cells were rejected and induced resistance to a subsequent iv challenge with Neuro2a parental cells (Neuro2a/pc), suggesting the involvement of an immune response. More importantly, in mice bearing Neuro2a/pc micrometastases, a single sc injection of Neuro2a/IL-21 cells significantly increased the mean tumor-free survival of treated animals (43 vs. 22 days) and cured 14% of them. The administration of two or three doses of Neuro2a/IL-21 cell vaccine further increased the mean survival time to 54 and 75 days, and the cure rate to 27 and 33%, respectively, whereas the use of unmodified Neuro2a or mock-transfected cells had no effect. In vivo cell subset depletion and a Winn-assay indicated the involvement of CD8 + CTLs. Immunohistochemical analysis indicated a reduction of CD31+ and VEGFR2+ microvessels in late metastases from therapeutically vaccinated mice. A role of survivin as antigen was suggested by in vitro assays using survivin-synthetic CTL-epitopes. CONCLUSIONS: Our present data indicate that IL-21-secreting NB cells are effective as therapeutic vaccine in mice bearing metastatic NB, through a specific CTL response involving survivin as antigen, and suggest a potential interest for IL-21 in NB immuno-gene therapy.  相似文献   
214.
215.
The interactions between Na+ (and K+) and Asp-201 of beta-galactosidase were studied. Analysis of the changes in Km and Vmax showed that the Kd for Na+ of wild type beta-galactosidase (0.36 +/- 0.09 mM) was about 10x lower than for K+ (3.9 +/- 0.6 mM). The difference is probably because of the size and other physical properties of the ions and the binding pocket. Decreases of Km as functions of Na+ and K+ for oNPG and pNPG and decreases of the Ki of both shallow and deep mode inhibitors were similar, whereas the Km and Ki of substrates and inhibitors without C6 hydroxyls remained constant. Thus, Na+ and K+ are important for binding galactosyl moieties via the C6 hydroxyl throughout catalysis. Na+ and K+ had lesser effects on the Vmax. The Vmax of pNPF and pNPA (substrates that lack a C6 hydroxyl) did not change upon addition of Na+ or K+, showing that the catalytic effects are also mediated via the C6 hydroxyl. Arrhenius plots indicated that Na+, but not K+, caused k3 (degalactosylation) to increase. Na+ also caused the k2 (galactosylation) with oNPG, but not with pNPG, to increase. In contrast, K+ caused the k2 values with both oNPG and pNPG to increase. Na+ and K+ mainly altered the entropies of activation of k2 and k3 with only small effects on the enthalpies of activation. This strongly suggests that only the positioning of the substrate, transition states, and covalent intermediate are altered by Na+ and K+. Further evidence that positioning is important was that substitution of Asp-201 with a Glu caused the Km and Ki values to increase significantly. In addition, the Kd values for Na+ or K+ were 5 to 8 fold higher. The negative charge of Asp-201 was shown to be vital for Na+ and K+ binding. Large amounts of Na+ or K+ had no effect on the very large Km and Ki values of D201N-beta-galactosidase and the Vmax values changed minimally and in a linear rather than hyperbolic way. D201F-beta-galactosidase, with a very bulky hydrophobic side chain in place of Asp, essentially obliterated all binding and catalysis.  相似文献   
216.
217.
Neuroglobin (Ngb) is a hexacoordinate globin expressed in the nervous system of vertebrates, involved in neuroprotection. O2 equilibrium measurements on mouse Ngb yielded significantly different P50 values, ranging from ∼2 torr to ∼10 torr. By a kinetic approach minimizing the effects of protein autoxidation, we measured P50 = 2.2 torr at 20 °C. As predicted from the structure, O2 binds to the Y44D Ngb mutant more quickly (k = 2.2 s−1 vs 0.15 s−1) and with slightly higher affinity (P50 = 1.3 torr) than wild-type. In addition, we introduced a novel reduction protocol for metNgb based on NADH:flavorubredoxin oxidoreductase (FlRd-red) from Escherichia coli, a candidate for the Ngb reducing activity recently identified in E. coli extracts. Interestingly, E. coli FlRd-red shares sequence similarity with the FAD-binding domain of the human apoptosis-inducing factor, a finding which may have unexpected significance with reference to the mechanism of neuroprotection by Ngb.  相似文献   
218.
In plants, cysteine protease inhibitors are involved in the regulation of protein turnover and play an important role in resistance against insects and pathogens. AtCYS1 from Arabidopsis thaliana encodes a protein of 102 amino acids that contains the conserved motif of cysteine protease inhibitors belonging to the cystatin superfamily (Gln-Val-Val-Ala-Gly). Recombinant A. thaliana cystatin-1 (AtCYS1) was expressed in Escherichia coli and purified. AtCYS1 inhibits the catalytic activity of papain (Kd = 4.0 x 10-2 micro m, at pH 7.0 and 25 degrees C), generally taken as a molecular model of cysteine proteases. The molecular bases for papain inhibition by AtCYS1 have been analysed taking into account the three-dimensional structure of the papain-stefin B complex. AtCYS1 is constitutively expressed in roots and in developing siliques of A. thaliana. In leaves, AtCYS1 is strongly induced by wounding, by challenge with avirulent pathogens and by nitric oxide (NO). The overexpression of AtCYS1 blocks cell death activated by either avirulent pathogens or by oxidative and nitrosative stress in both A. thaliana suspension cultured cells and in transgenic tobacco plants. The suppression of the NO-mediated cell death in plants overexpressing AtCYS1 provides the evidence that NO is not cytotoxic for the plant, indicating that NO functions as cell death trigger through the stimulation of an active process, in which cysteine proteases and theirs proteinaceous inhibitors appear to play a crucial role.  相似文献   
219.
Transgenic white poplar (Populus alba L.) plants expressing a novel Arabidopsis thaliana cysteine proteinase inhibitor (Atcys) gene have been produced using Agrobacterium tumefaciens-mediated gene transfer. Internodal stem segments of cv. Villafranca were co-cultivated with the EHA105 pBI-Atcys A. tumefaciens strain. Sixteen putative transgenic plant lines were regenerated from different calli with a transformation efficiency of 11%. The integration and expression of the cysteine proteinase inhibitor (Atcys) gene into the plant genome was confirmed by Southern and northern blot analyses. Papain inhibitory activity was detected in poplar transgenic tissues by means of a specific in vitro assay. Such activity was sufficient to inhibit most of the digestive proteinase activity of chrysomelid beetle (Chrysomela populi L.) and confer resistance to C. populi larvae on selected transgenic plants. A close correspondence between the inhibition of papain and resistance to poplar leaf beetle was observed in all tested transgenic lines. Our results indicate that Atcys could be succesfully employed in breeding programmes aimed at the selection of new poplar genotypes resistant to major insect pests.  相似文献   
220.
We explored the potential of the cox1 gene in the species resolution of soil fungi and compared it with the nuclear internal transcribed spacer (ITS) and small subunit (SSU)-rDNA. Conserved primers allowing the amplification of the fungal cox1 gene were designed, and a total of 47 isolates of Zygomycota and Ascomycota were investigated. The analysis revealed a lack of introns in >90% of the isolates. Comparison of the species of each of the six studied genera showed high interspecific sequence polymorphisms. Indeed, the average of nucleotide variations (4.2–11%) according to the genus, due mainly to the nucleotide substitutions, led to the taxonomic resolution of all the species studied regarding both ITS and SSU-rDNA, in which <88% were discriminated. The phylogenetic analysis performed after alignment of the cox1 gene across distant fungal species was in accordance with the well-known taxonomic position of the species studied and no overlap was observed between intra- and interspecific variations. These results clearly demonstrated that the cox1 sequences could provide good molecular markers for the determination of the species composition of environmental samples and constitute an important advance to study soil fungal biodiversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号