首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   7篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
21.
Progress in the functional studies of human olfactory receptors has been largely hampered by the lack of a reliable experimental model system. Although transgenic approaches in mice could characterize the function of individual olfactory receptors, the presence of over 300 functional genes in the human genome becomes a daunting task. Thus, the characterization of individuals with a genetic susceptibility to altered olfaction coupled with the absence of particular olfactory receptor genes will allow phenotype/genotype correlations and vindicate the function of specific olfactory receptors with their cognate ligands. We characterized a 118 kb β-globin deletion and found that its 3' end breakpoint extends to the neighboring olfactory receptor region downstream of the β-globin gene cluster. This deletion encompasses six contiguous olfactory receptor genes (OR51V1, OR52Z1, OR51A1P, OR52A1, OR52A5, and OR52A4) all of which are expressed in the brain. Topology analysis of the encoded proteins from these olfactory receptor genes revealed that OR52Z1, OR52A1, OR52A5, and OR52A4 are predicted to be functional receptors as they display integral characteristics of G-proteins coupled receptors. Individuals homozygous for the 118 kb β-globin deletion are afflicted with β-thalassemia due to a homozygous deletion of the β-globin gene and have no alleles for the above mentioned olfactory receptors genes. This is the first example of a homozygous deletion of olfactory receptor genes in human. Although altered olfaction remains to be ascertained in these individuals, such a study can be carried out in β-thalassemia patients from Malaysia, Indonesia and the Philippines where this mutation is common. Furthermore, OR52A1 contains a γ-globin enhancer, which was previously shown to confer continuous expression of the fetal γ-globin genes. Thus, the hypothesis that β-thalassemia individuals, who are homozygous for the 118 kb deletion, may also have an exacerbation of their anemia due to the deletion of two copies of the γ-globin enhancer element is worthy of consideration.  相似文献   
22.
Plastid-derived signals are known to coordinate expression of nuclear genes encoding plastid-localized proteins in a process termed retrograde signaling. To date, the identity of retrograde-signaling molecules has remained elusive. Here, we show that methylerythritol cyclodiphosphate (MEcPP), a precursor of isoprenoids produced by the plastidial methylerythritol phosphate (MEP) pathway, elicits the expression of selected stress-responsive nuclear-encoded plastidial proteins. Genetic and pharmacological manipulations of the individual MEP pathway metabolite levels demonstrate the high specificity of MEcPP as an inducer of these targeted stress-responsive genes. We further demonstrate that abiotic stresses elevate MEcPP levels, eliciting the expression of the aforementioned genes. We propose that the MEP pathway, in addition to producing isoprenoids, functions as a stress sensor and a coordinator of expression of targeted stress-responsive nuclear genes via modulation of the levels of MEcPP, a specific and critical retrograde-signaling metabolite.  相似文献   
23.
We characterized the t(7;22)(q32;q11.2) chromosomal translocation in an obese female with coarse features, short stature, developmental delay and a hypoplastic fifth digit. While these clinical features suggest Coffin-Siris Syndrome (CSS), we excluded a CSS diagnosis by exome sequencing based on the absence of deleterious mutations in six chromatin-remodeling genes recently shown to cause CSS. Thus, molecular characterization of her translocation could delineate genes that underlie other syndromes resembling CSS. Comparative genomic hybridization microarrays revealed on chromosome 7 the duplication of a 434,682 bp region that included the tail end of an uncharacterized gene termed C7orf58 (also called CPED1) and spanned the entire WNT16 and FAM3C genes. Because the translocation breakpoint on chromosome 22 did not disrupt any apparent gene, her disorder was deemed to result from the rearrangement on chromosome 7. Mapping of yeast and bacterial artificial chromosome clones by fluorescent in situ hybridization on chromosome spreads from this patient showed that the duplicated region and all three genes within it were located on both derivative chromosomes 7 and 22. Furthermore, DNA sequencing of exons and splice junctional regions from C7orf58, WNT16 and FAM3C revealed the presence of potential splice site and promoter mutations, thereby augmenting the detrimental effect of the duplicated genes. Hence, dysregulation and/or disruptions of C7orf58, WNT16 and FAM3C underlie the phenotype of this patient, serve as candidate genes for other individuals with similar clinical features and could provide insights into the physiological role of the novel gene C7orf58.  相似文献   
24.
25.
26.
27.

Background

Many inducible plant-defense responses are activated by jasmonates (JAs), C6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae), an insect herbivore (leafminers: Liriomyza trifolii), and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola). We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani), a natural enemy of aphids.

Principal Findings

This study conclusively establishes that jasmonates and C6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic (plant-herbivore-natural enemy) interactions.

Significance

The data suggest that jasmonates and hexenyl acetate play distinct roles in mediating direct and indirect plant-defense responses. The potential advantage of this “division of labor” is to ensure the most effective defense strategy that minimizes incurred damages at a reduced metabolic cost.  相似文献   
28.
A salinity and dehydration stress-responsive calcium-dependent protein kinase (CDPK) was isolated from the common ice plant (Mesembryanthemum crystallinum; McCPK1). McCPK1 undergoes myristoylation, but not palmitoylation in vitro. Removal of the N-terminal myristate acceptor site partially reduced McCPK1 plasma membrane (PM) localization as determined by transient expression of green fluorescent protein fusions in microprojectile-bombarded cells. Removal of the N-terminal domain (amino acids 1-70) completely abolished PM localization, suggesting that myristoylation and possibly the N-terminal domain contribute to membrane association of the kinase. The recombinant, Escherichia coli-expressed, full-length McCPK1 protein was catalytically active in a calcium-dependent manner (K0.5 = 0.15 microm). Autophosphorylation of recombinant McCPK1 was observed in vitro on at least two different Ser residues, with the location of two sites being mapped to Ser-62 and Ser-420. An Ala substitution at the Ser-62 or Ser-420 autophosphorylation site resulted in a slight increase in kinase activity relative to wild-type McCPK1 against a histone H1 substrate. In contrast, Ala substitutions at both sites resulted in a dramatic decrease in kinase activity relative to wild-type McCPK1 using histone H1 as substrate. McCPK1 undergoes a reversible change in subcellular localization from the PM to the nucleus, endoplasmic reticulum, and actin microfilaments of the cytoskeleton in response to reductions in humidity, as determined by transient expression of McCPK1-green fluorescent protein fusions in microprojectile-bombarded cells and confirmed by subcellular fractionation and western-blot analysis of 6x His-tagged McCPK1.  相似文献   
29.
Transgenic mice overexpressing leptin (LepTg) exhibit substantial reductions in adipose mass. Since the binding of leptin to its receptor activates the sympathetic nervous system, we reasoned that the lean state of the LepTg mice could be caused by chronic lipolysis. Instead, the LepTg mice exhibited a low basal lipolysis state and their lean phenotype was not dependent on the presence of beta3-adrenergic receptors. In their white adipose tissue, protein levels of protein kinase A, hormone-sensitive lipase, and ADRP were not impaired. However, compared to normal mice, perilipin, perilipin mRNA, and cAMP-stimulated PKA activity were significantly attenuated. Overall, we demonstrate that the lean phenotype of the LepTg mice does not result in a chronically elevated lipolytic state, but instead in a low basal lipolysis state characterized by a decrease in perilipin and PKA activity in white fat.  相似文献   
30.
In this report, we cloned a novel calmodulin-kinase (CaM-KIδ) from HeLa cells and characterized its activation mechanism. CaM-KIδ exhibits Ca2+/CaM-dependent activity that is enhanced (30-fold) in vitro by phosphorylation of its Thr180 by CaM-K kinase (CaM-KK), consistent with detection of CaM-KIδ-activating activity in HeLa cells. We also identified a novel CaM-KKβ isoform (CaM-KKβ-3) in HeLa cells whose activity was highly Ca2+/CaM-independent. Transiently expressed CaM-KIδ exhibited enhanced protein kinase activity in HeLa cells without ionomycin stimulation. This sustained activation of CaM-KIδ was completely abolished by Thr180Ala mutation and inhibited by CaM-KK inhibitor, STO-609, indicating a functional CaM-KK/CaM-KIδ cascade in HeLa cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号