首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   56篇
  国内免费   2篇
  2023年   5篇
  2022年   7篇
  2021年   34篇
  2020年   12篇
  2019年   13篇
  2018年   16篇
  2017年   12篇
  2016年   29篇
  2015年   37篇
  2014年   43篇
  2013年   49篇
  2012年   75篇
  2011年   81篇
  2010年   34篇
  2009年   25篇
  2008年   44篇
  2007年   45篇
  2006年   42篇
  2005年   48篇
  2004年   39篇
  2003年   22篇
  2002年   24篇
  2001年   15篇
  2000年   23篇
  1999年   14篇
  1998年   7篇
  1997年   12篇
  1996年   8篇
  1995年   9篇
  1994年   7篇
  1993年   5篇
  1992年   19篇
  1991年   14篇
  1990年   12篇
  1989年   11篇
  1988年   11篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   7篇
  1981年   6篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1975年   3篇
  1974年   3篇
  1973年   6篇
  1972年   6篇
  1969年   3篇
排序方式: 共有991条查询结果,搜索用时 31 毫秒
31.
32.
33.
The aim of the present study was to characterize the enzymatic deinking of various types of waste paper. Studies on the optimization of enzymatic deinking have been performed previously using commercially available enzyme preparations containing cellulase and hemicellulase. The enzymatic deinking of different types of waste paper demonstrated a high efficiency of 86.6% on laser-printed paper, but a low deinking efficiency of 12.9% was obtained with newspaper. All enzymatic treatments significantly improved the drainage rate of the deinked waste paper. Enzymatic deinking increased the tensile index of magazine paper but reduced the tensile index of bubble jet-printed paper, photocopy paper and newspaper. Enzymatic hydrolysis caused a 21.1% reduction in the tear index for bubble jet-printed paper, but a 3.1% increase in the tear index was obtained for laser-printed paper relative to respective blank. In addition, enzymatic hydrolysis increased the burst index by 4.7% relative to blank for laser-printed paper. However, photocopy paper showed the highest reduction (8.3%) in the burst index relative to blank. Taken together, these results suggest that enzymatic hydrolysis is both advantageous and detrimental to the mechanical properties of deinked paper. Thus, the proper regulation of enzymatic hydrolysis is crucial to improve the quality of recycled paper.  相似文献   
34.
Variation in seasonal sprouting pattern from roots and rhizomes of perennial herbaceous plants influence the success of plant proliferation ability, invasiveness and escape from weed control measures. The latter often rely on methods, which repeatedly fragment the underground system, thereby trigger adventitious and axillary buds to sprout, and consequently reduce the amount of stored energy. If carried out at times when no re-growth occurs, treatments will have little effect on weed populations, but cost much in terms of labour and energy. The purpose of this experiment was to determine the seasonal variation in bud sprouting capacity after fragmentation. Five troublesome perennial weed species, collected in northern and southern Sweden, were grown outdoors in Uppsala, Sweden (N 59°49′, E 17°39′), from May 2009 to January 2010. Cut root and rhizome fragments, taken at two weeks intervals from July to January, were used to evaluate bud sprouting capacity, which was statistically analyzed using generalized additive models. In Elytrigia repens from southern Sweden and Sonchus arvensis sprouting capacity was significantly impaired during a period from September to November. In Equisetum arvense and Tussilago farfara sprouting was low between July and November where after it increased. In contrast, Cirsium arvense and E. repens from northern Sweden sprouted readily throughout the period. Except for E. repens, a model by populations was significantly better than one based on latitudinal origin. The result suggests a species-specific timing of treatments in weed management, avoiding the non-effective autumn period for E. arvense, S. arvensis and T. farfara, and in some cases in E. repens.  相似文献   
35.
Magnesium (Mg) is a promising biodegradable metallic material for applications in cellular/tissue engineering and biomedical implants/devices. To advance clinical translation of Mg-based biomaterials, we investigated the effects and mechanisms of Mg degradation on the proliferation and pluripotency of human embryonic stem cells (hESCs). We used hESCs as the in vitro model system to study cellular responses to Mg degradation because they are sensitive to toxicants and capable of differentiating into any cell types of interest for regenerative medicine. In a previous study when hESCs were cultured in vitro with either polished metallic Mg (99.9% purity) or pre-degraded Mg, cell death was observed within the first 30 hours of culture. Excess Mg ions and hydroxide ions induced by Mg degradation may have been the causes for the observed cell death; hence, their respective effects on hESCs were investigated for the first time to reveal the potential mechanisms. For this purpose, the mTeSR®1 hESC culture media was either modified to an alkaline pH of 8.1 or supplemented with 0.4–40 mM of Mg ions. We showed that the initial increase of media pH to 8.1 had no adverse effect on hESC proliferation. At all tested Mg ion dosages, the hESCs grew to confluency and retained pluripotency as indicated by the expression of OCT4, SSEA3, and SOX2. When the supplemental Mg ion dosages increased to greater than 10 mM, however, hESC colony morphology changed and cell counts decreased. These results suggest that Mg-based implants or scaffolds are promising in combination with hESCs for regenerative medicine applications, providing their degradation rate is moderate. Additionally, the hESC culture system could serve as a standard model for cytocompatibility studies of Mg in vitro, and an identified 10 mM critical dosage of Mg ions could serve as a design guideline for safe degradation of Mg-based implants/scaffolds.  相似文献   
36.
Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome - lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3+ structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival.  相似文献   
37.
Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL) cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation.  相似文献   
38.

Background

There has been no comprehensive study on biochemical characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus. To fill this void in the literature, a nationwide investigation was performed to quantify the enzyme activities, thereby attempting to characterize the potential resistance mechanisms in Cx. quinquefasciatus in residential areas in Malaysia.

Methodology/Principal Findings

Culex quinquefasciatus from 14 residential areas across 13 states and one federal territory were subjected to esterases, mixed function oxidases, glutathione-S-transferase and insensitive acetylcholinesterase assays. Enzyme assays revealed that α-esterases and β-esterases were elevated in 13 populations and 12 populations, respectively. Nine populations demonstrated elevated levels of mixed function oxidases and glutathione-S-transferase. Acetylcholinesterase was insensitive to propoxur in all 14 populations. Activity of α-esterases associated with malathion resistance was found in the present study. In addition, an association between the activity of α-esterases and β-esterases was also demonstrated.

Conclusions/Significance

The present study has characterized the potential biochemical mechanisms in contributing towards insecticide resistance in Cx. quinquefasciatus field populations in Malaysia. Identification of mechanisms underlying the insecticide resistance will be beneficial in developing effective mosquito control programs in Malaysia.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号