首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   940篇
  免费   56篇
  国内免费   2篇
  998篇
  2023年   7篇
  2022年   12篇
  2021年   34篇
  2020年   12篇
  2019年   13篇
  2018年   16篇
  2017年   12篇
  2016年   29篇
  2015年   37篇
  2014年   43篇
  2013年   49篇
  2012年   75篇
  2011年   81篇
  2010年   34篇
  2009年   25篇
  2008年   44篇
  2007年   45篇
  2006年   42篇
  2005年   48篇
  2004年   39篇
  2003年   22篇
  2002年   24篇
  2001年   15篇
  2000年   23篇
  1999年   14篇
  1998年   7篇
  1997年   12篇
  1996年   8篇
  1995年   9篇
  1994年   7篇
  1993年   5篇
  1992年   19篇
  1991年   14篇
  1990年   12篇
  1989年   11篇
  1988年   11篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   7篇
  1981年   6篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1975年   3篇
  1974年   3篇
  1973年   6篇
  1972年   6篇
  1969年   3篇
排序方式: 共有998条查询结果,搜索用时 15 毫秒
131.
Structural variations (SVs) contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET) sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10–20 kb and compared their characteristics with short insert (1 kb) libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer.  相似文献   
132.
133.
Tan CW  Chan YF  Sim KM  Tan EL  Poh CL 《PloS one》2012,7(5):e34589
Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 μM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.  相似文献   
134.
135.
Bethoxazin is a new broad spectrum industrial microbicide with applications in material and coating preservation. However, little is known of its reactivity profile and mechanism of action. In this study, we examined the reactivity of bethoxazin toward biologically important nucleophilic groups using UV-vis spectroscopy and LC-MS/MS techniques and found the molecule to be highly electrophilic. Bethoxazin reacted with molecules containing free sulfhydryl groups such as GSH and human serum albumin to form covalent adducts that were detectable by MS, but did not react with amino, carboxylic, phenolic, amino oxo, alcoholic, and phosphate functional groups. Bethoxazin potently inhibited the catalytic activity of yeast DNA topoisomerase II and the growth of yeast BY4742 cells at low micromolar concentrations. However, the reduced form of bethoxazin and GSH-treated bethoxazin were both inactive in these assays. The experimentally determined relative reactivity of bethoxazin and its reduced form analog correlated with their biological activities as well as their quantum-mechanically calculated electrophilicity properties. Taken together, the results suggest that bethoxazin may exert its microbicidal action by reacting with sensitive endogenous sulfhydryl biomolecules of microbial cells. Consistent with this view, the inhibitory activity of bethoxazin on topoisomerase II may be due to its ability to react with critical free cysteine sulfhydryl groups on the enzyme. Our studies have provided for the first time a better understanding of the reactivity of bethoxazin, as well as some insights into the mechanism by which the compound exerts its microbicidal action.  相似文献   
136.
137.
D6 scavenges inflammatory chemokines and is essential for the regulation of inflammatory and immune responses. Mechanisms explaining the cellular basis for D6 function have been based on D6 expression by lymphatic endothelial cells. In this study, we demonstrate that functional D6 is also expressed by murine and human hemopoietic cells and that this expression can be regulated by pro- and anti-inflammatory agents. D6 expression was highest in B cells and dendritic cells (DCs). In myeloid cells, LPS down-regulated expression, while TGF-beta up-regulated expression. Activation of T cells with anti-CD3 and soluble CD28 up-regulated mRNA expression 20-fold, while maturation of human macrophage and megakaryocyte precursors also up-regulated D6 expression. Competition assays demonstrated that chemokine uptake was D6 dependent in human leukocytes, whereas mouse D6-null cells failed to uptake and clear inflammatory chemokines. Furthermore, we present evidence indicating that D6 expression is GATA1 dependent, thus explaining D6 expression in myeloid progenitor cells, mast cells, megakaryocytes, and DCs. We propose a model for D6 function in which leukocytes, within inflamed sites, activate D6 expression and thus trigger resolution of inflammatory responses. Our data on D6 expression by circulating DCs and B cells also suggest alternative roles for D6, perhaps in the coordination of innate and adaptive immune responses. These data therefore alter our models of in vivo D6 function and suggest possible discrete, and novel, roles for D6 on lymphatic endothelial cells and leukocytes.  相似文献   
138.
Biclustering is an important tool in microarray analysis when only a subset of genes co-regulates in a subset of conditions. Different from standard clustering analyses, biclustering performs simultaneous classification in both gene and condition directions in a microarray data matrix. However, the biclustering problem is inherently intractable and computationally complex. In this paper, we present a new biclustering algorithm based on the geometrical viewpoint of coherent gene expression profiles. In this method, we perform pattern identification based on the Hough transform in a column-pair space. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our studies show that the approach can discover significant biclusters with respect to the increased noise level and regulatory complexity. Furthermore, we also test the ability of our method to locate biologically verifiable biclusters within an annotated set of genes.  相似文献   
139.
This study investigated the effects of probenecid to inhibit the multi-drug resistance-associated protein-1 (MRP-1) in mediating the efflux and myotoxicity in rat skeletal muscles, with administration of rosuvastatin. Male Sprague-Dawley rats were administered daily, for 15 days, with either rosuvastatin (50, 100 or 200 mg/kg) or probenecid (100 mg/kg) alone, or with a combination of rosuvastatin (50, 100 or 200 mg/kg) and probenecid (100 mg/kg). Skeletal muscle toxicity was elevated with probenecid administered with 200 mg/kg/day of rosuvastatin, with the elevation of creatine kinase by 12-fold, alanine aminotrasferase by 10-fold and creatinine by 9-fold at day 15, with no adverse effects observed when probenecid was given alone. Mitochondria ultrastructural damage with enlargement, disruption, cristolysis and vaculation was seen in the soleus and plantaris of animals administered with probenecid and high dosages of statin. These muscles were also expressing more succinic dehydrogenase (SDH)-positive and cytochrome oxidase (CyOX)-positive fibers. Although generally well-tolerated, statins produce a variety of adverse skeletal muscle events. Hydrophilic statins, with reduced levels of non-specific passive diffusion rates into extra-hepatic tissues, are still seen to produce myopathy. This highlights the important roles of transport mechanisms in statin transport at the skeletal muscles. Excessive influx, reduced efflux or the combination of the two could result in elevated cellular levels of statins at the skeletal muscles, resulting in toxicity. This study provides preliminary evidence that the MRP-1 transporter and efflux at skeletal muscles possibly play significant roles in statin-induced myopathy.  相似文献   
140.
Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while mu-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号