首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   26篇
  242篇
  2022年   3篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   7篇
  2012年   9篇
  2011年   20篇
  2010年   6篇
  2009年   13篇
  2008年   8篇
  2007年   11篇
  2006年   7篇
  2005年   13篇
  2004年   17篇
  2003年   7篇
  2002年   11篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   10篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有242条查询结果,搜索用时 9 毫秒
51.
52.
Abstract: In this study we examined the effects of staurosporine, a potent inhibitor of protein kinase C (PKC), on the differentiation of C6 glial cells and on the expression and cellular distribution of specific PKC isoforms. Staurosporine reduced cell proliferation and induced distinctive changes in the morphological appearance of the cells to that characteristic of cells exhibiting astrocytic phenotypes. The differentiative effect of staurosporine was further indicated by the increased expression of two proteins related to astrocytic phenotypes, glial fibrillary acidic protein (GFAP) and glutamine synthetase. Thus, staurosporine induced a dose-dependent increase both in GFAP immunoreactivity and in the activity and protein levels of glutamine synthetase. Staurosporine also induced a decrease in the expression of PKC-β2 and an increase in that of PKC-γ. In addition, it induced translocation of PKC-ε from the membrane to the cytosol, whereas no differences were observed in the distribution of the other PKC isoforms. The results of our study indicate that staurosporine induced astrocytic phenotypes in glial cells and that changes in the expression and cellular distribution of these PKC isoforms may be related to astrocytic differentiation.  相似文献   
53.
54.
55.
Gap junctions (GJs) belong to one of the most conserved cellular structures in multicellular organisms. They probably serve similar functions in all Metazoa, providing one of the most common forms of intercellular communication. GJs are widely distributed in embryonic cells and tissues and have been attributed an important role in development, modulating cell growth and differentiation. These channels have been also implicated in mediating electrical synaptic signaling; Coupling through GJs is now accepted as a major pathway that supports network behavior and contributes to physiological rhythms. Here we focus on the physiology and molecular biology of GJs in a recently established model for the study of rhythm-generating networks and their role in behavior: the frontal ganglion (FG) of the desert locust, Schistocerca gregaria. Four novel genes of the invertebrate GJs (innexin) gene family were found to be expressed in the FG: Sg-inx1, Sg-inx2, Sg-inx3 and Sg-inx4. Immunohistochemistry revealed that some of the neurons in the FG express at least one innexin protein, INX1. We also established the presence of functional gap junction proteins in the FG and demonstrated functional electrical coupling between the neurons in the FG. This study forms the basis for further investigation of the role of GJs in network development and behavior.  相似文献   
56.

Background  

Datasets generated on deep-sequencing platforms have been deposited in various public repositories such as the Gene Expression Omnibus (GEO), Sequence Read Archive (SRA) hosted by the NCBI, or the DNA Data Bank of Japan (ddbj). Despite being rich data sources, they have not been used much due to the difficulty in locating and analyzing datasets of interest.  相似文献   
57.
A new mechanism of selective transport and localization of proteins inside any living cell is presented. The mechanism is based on pH-induced protein trapping. It is shown that spontaneous and unique spatial redistribution of different proteins is possible in any aqueous solution with stable non-uniform distribution of H(+) ions. This phenomenon was observed in artificial systems with fixed non-uniform pH distribution and in living cells.  相似文献   
58.
PDGF binding to its receptor promotes the association with and stimulates the phosphorylation of PLC-gamma 1 at tyrosine and serine residues. Also, PDGF induces an increase in the hydrolysis of inositol phospholipids by PLC. How PDGF activates PLC was investigated by substituting phenylalanine for tyrosine at PLC-gamma 1 phosphorylation sites 771, 783, and 1254 and expressing the mutant enzymes in NIH 3T3 cells. Phenylalanine substitution at Tyr-783 completely blocked the activation of PLC by PDGF, whereas mutation at Try-1254 inhibited and mutation at Tyr-771 enhanced the response. Like the wild type, PLC-gamma 1 substituted with phenylalanine at Tyr-783 became associated with the PDGF receptor and underwent phosphorylation at serine residues in response to PDGF. These results suggest that PLC-gamma 1 is the PLC isozyme that mediates PDGF-induced inositol phospholipid hydrolysis, that phosphorylation on Tyr-783 is essential for PLC-gamma 1 activation. These results provide direct evidence that growth factor receptors activate the function of intracellular protein by tyrosine phosphorylation.  相似文献   
59.

Key message

Allohexaploid Brassica populations reveal ongoing segregation for fertility, while genotype influences fertility and meiotic stability.

Abstract

Creation of a new Brassica allohexaploid species is of interest for the development of a crop type with increased heterosis and adaptability. At present, no naturally occurring, meiotically stable Brassica allohexaploid exists, with little data available on chromosome behaviour and meiotic control in allohexaploid germplasm. In this study, 100 plants from the cross B. carinata?×?B. rapa (A2 allohexaploid population) and 69 plants from the cross (B. napus?×?B. carinata)?×?B. juncea (H2 allohexaploid population) were assessed for fertility and meiotic behaviour. Estimated pollen viability, self-pollinated seed set, number of seeds on the main shoot, number of pods on the main shoot, seeds per ten pods and plant height were measured for both the A2 and H2 populations and for a set of reference control cultivars. The H2 population had high segregation for pollen viability and meiotic stability, while the A2 population was characterised by low pollen fertility and a high level of chromosome loss. Both populations were taller, but had lower average fertility trait values than the control cultivar samples. The study also characterises fertility and meiotic chromosome behaviour in genotypes and progeny sets in heterozygous allotetraploid Brassica derived lines, and indicates that genotypes of the parents and H1 hybrids are affecting chromosome pairing and fertility phenotypes in the H2 population. The identification and characterisation of factors influencing stability in novel allohexaploid Brassica populations will assist in the development of this as a new crop species for food and agricultural benefit.
  相似文献   
60.
Iron and copper play major roles in biological systems, catalyzing free radical production and consequently causing damage. The relatively high levels of these metals, which are mobilized into the coronary flow following prolonged ischemia, have been incriminated as key players in reperfusion injury to the heart. In the present communication we investigated other roles of iron - providing protection to the ischemic heart via preconditioning (PC). PC was accomplished by subjecting isolated rat hearts to three episodes of 2 min ischemia separated by 3 min of reperfusion. Prolonged ischemia followed the PC phase. PC hearts (group I) were compared to hearts subjected to normal perfusion (group II, no ischemia) and to ischemia without PC (group III). Group I showed a marked improvement in the recovery of hemodynamic function vs. group III. Biochemical parameters further substantiated the PC protection provided to group I against prolonged ischemia. Correspondingly, group I presented markedly lower re-distribution and mobilization of iron and copper into the coronary flow, following prolonged ischemia, as evinced from the decrease in total levels, and in the 'free' fraction of iron and copper. During the PC phase no loss of cardiac function was observed. A small wave of re-distribution and mobilization of iron (typically less than 4-8% of the value of 35 min ischemia) was recorded. The cellular content of ferritin (Ft) measured in the heart was significantly higher in group I than in group III (0.90 and 0.54 microg/mg, respectively). Also, iron-saturation of Ft was significantly lower for PC hearts, compared to both groups II and III (0.22 vs. 0.32 and 0.31 microg/mg, for 35 min ischemia, respectively). These findings are in accord with the proposal that intracellular re-distribution and mobilization of small levels of iron, during PC, cause rapid accumulation of ferritin - the major iron-storage protein. It is proposed that iron play a dual role: (i) It serves as a signaling pathway for the accumulation of Ft following the PC phase. This iron is not involved in cardiac injury, but rather prepares the heart against future high levels of 'free' iron, thus reducing the degree of myocardial damage after prolonged ischemia. (ii) High levels of iron (and copper) are mobilized following prolonged ischemia and cause tissue damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号