首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   50篇
  国内免费   9篇
  2023年   3篇
  2022年   18篇
  2021年   29篇
  2020年   13篇
  2019年   15篇
  2018年   26篇
  2017年   29篇
  2016年   26篇
  2015年   55篇
  2014年   30篇
  2013年   46篇
  2012年   50篇
  2011年   73篇
  2010年   47篇
  2009年   35篇
  2008年   36篇
  2007年   35篇
  2006年   42篇
  2005年   23篇
  2004年   18篇
  2003年   18篇
  2002年   13篇
  2001年   19篇
  2000年   9篇
  1999年   15篇
  1998年   10篇
  1997年   11篇
  1996年   7篇
  1995年   4篇
  1994年   7篇
  1992年   3篇
  1991年   3篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1978年   2篇
  1977年   2篇
  1972年   1篇
  1966年   2篇
  1965年   3篇
  1961年   1篇
  1960年   2篇
  1959年   1篇
  1957年   3篇
  1955年   1篇
  1954年   2篇
  1951年   1篇
排序方式: 共有809条查询结果,搜索用时 31 毫秒
771.
The poikilochorophyllous, desiccation-tolerant (PDT) angiosperm, Pleurostima purpurea, normally occurs in less exposed rock faces and slightly shady sites. Our aim was to evaluate the light susceptibility of the photosynthetic apparatus during dehydration-rehydration cycle in P. purpurea. In a controlled environment, the potted plants were subjected to water deficit under two different photosynthetic photon flux densities [PPFD, 100 and 400 μmol(photon) m?2 s?1]. In the higher PPFD, net photosynthetic rate (P N) become undetectable after stomata closure but photochemical efficiency of photosystem II, electron transport rate, and photochemical quenching coefficient were maintained relatively high, despite a partial decrease. The photochemical activity was inhibited only after the complete loss of chlorophylls, when leaf relative water content dropped below 72% and total carotenoids reached maximal accumulation. Nonphotochemical energy dissipation increased earlier in response to dehydration under higher PPFD. P N and photochemical activity were fully recovered after rehydration under both light treatments. Our results suggested that the natural occurrence of P. purpurea should not be restricted by the light intensity during the complete desiccation-rehydration cycles.  相似文献   
772.
Primate–parasite interactions are often investigated via coprological studies given ethical and conservation restrictions of collecting primate hosts. Yet, these studies are inadequate to recover adult helminths for taxonomic identification and to accurately assess their prevalence, intensity, abundance, and site of infection. Fresh carcasses found in anthropogenic landscapes come as informative and reliable alternatives. In this study, we identified the helminths of brown howler monkeys (Alouatta guariba clamitans) and their sites of infection, and measured their prevalence, intensity, and abundance of infection. We necropsied 18 adult males, 11 adult females, and 7 juvenile males that died in conflicts with the anthropogenic environment (domestic dog attacks, n = 11; electrocutions and road-kills, n = 10 each; unknown, n = 5) in periurban landscapes of southern Brazil between 2013 and 2019. We found three nematodes (Trypanoxyuris minutus, Dipetalonema gracile, and Parabronema bonnei) and one cestode (Bertiella cf. studeri), a diversity estimated to account for a sampling completeness of 99%. Prevalence ranged from 3% for P. bonnei to 100% for T. minutus. Mean abundance ranged from 2 (D. gracile and B. cf. studeri) to 55,116 (T. minutus) and mean intensity of infection ranged from 4 (B. cf. studeri) to 55,116 (T. minutus). Trypanoxyuris minutus sex ratio was strongly male-biased. The intensity of infection with T. minutus was higher in juvenile males and adult females than in adult males. The low parasite diversity and the helminths' mode of transmission are compatible with howlers' arboreality and folivorous-frugivorous diet. The howlers were not infected with soil-transmitted helminth parasites of humans and domestic animals on the ground and probably did not eat invertebrates to complement the diet. Given the lack of evidence of howler health problems, we suggest that the causes of death of the necropsied howlers are the major threats to the long-term conservation of the species at the study periurban landscapes.  相似文献   
773.
Cystic fibrosis transmembrane conductance regulator (CFTR) channel opening and closing are driven by cycles of adenosine triphosphate (ATP) binding–induced formation and hydrolysis-triggered disruption of a heterodimer of its cytoplasmic nucleotide-binding domains (NBDs). Although both composite sites enclosed within the heterodimer interface contain ATP in an open CFTR channel, ATP hydrolysis in the sole catalytically competent site causes channel closure. Opening of the NBD interface at that site then allows ADP–ATP exchange. But how frequently, and how far, the NBD surfaces separate at the other, inactive composite site remains unclear. We assessed separation at each composite site by monitoring access of nucleotide-sized hydrophilic, thiol-specific methanothiosulfonate (MTS) reagents to interfacial target cysteines introduced into either LSGGQ-like ATP-binding cassette signature sequence (replacing equivalent conserved serines: S549 and S1347). Covalent MTS-dependent modification of either cysteine while channels were kept closed by the absence of ATP impaired subsequent opening upon ATP readdition. Modification while channels were opening and closing in the presence of ATP caused macroscopic CFTR current to decline at the same speed as when the unmodified channels shut upon sudden ATP withdrawal. These results suggest that the target cysteines can be modified only in closed channels; that after modification the attached MTS adduct interferes with ATP-mediated opening; and that modification in the presence of ATP occurs rapidly once channels close, before they can reopen. This interpretation was corroborated by the finding that, for either cysteine target, the addition of the hydrolysis-impairing mutation K1250R (catalytic site Walker A Lys) similarly slowed, by an order of magnitude, channel closing on ATP removal and the speed of modification by MTS reagent in ATP. We conclude that, in every CFTR channel gating cycle, the NBD dimer interface separates simultaneously at both composite sites sufficiently to allow MTS reagents to access both signature-sequence serines. Relatively rapid modification of S1347C channels by larger reagents—MTS-glucose, MTS-biotin, and MTS-rhodamine—demonstrates that, at the noncatalytic composite site, this separation must exceed 8 Å.  相似文献   
774.
Water deficit (WD) in Lupinus albus L. brings about tissue-specific responses that are dependent on stress intensity. Carbohydrate metabolism is very sensitive to changes in plant water status. Six days from withholding water (DAW), sucrose, glucose and fructose levels of the leaf blade had already increased over 5-fold, and the activities of SS and INV(A) had increased c. 1.5-2 times. From 9 DAW on, when stress intensity was more pronounced, these effects were reversed with fructose and glucose concentrations as well as INV(A) activity dropping in parallel. The stem (specifically the stele) responded to the stress intensification with striking increases in the concentration of sugars, N and S, and in the induction of thaumatin-like-protein and an increase in chitinase and peroxidase. At 13 DAW, the plants lost most of the leaves but on rewatering they fully recovered. Thus, the observed changes appear to contribute to a general mechanism of survival under drought, the stem playing a key role in that process.  相似文献   
775.
Cisplatin is a highly effective chemotherapeutic drug used in the treatment of several tumors. It is a DNA-damaging agent that induces apoptosis of rapidly proliferating cells, an important factor underlying its therapeutic efficacy. Unfortunately, cellular resistance occurs often. A large fraction of tumor cells harbor mutations in p53, contributing to defects in apoptotic pathways and drug resistance. However, cisplatin-induced apoptosis can also occur in p53 deficient cells; thus, elucidation of the molecular mechanism involved will potentially yield new strategies to eliminate tumors that have defects in the p53 pathway. Most of the studies in this field have been conducted in cultured mammalian cells, not amenable to systematic genetic manipulation. Therefore, we aimed to establish a simplified model devoid of a p53 ortholog to study cisplatin-induced programmed cell death (PCD), using the yeast Saccharomyces cerevisiae.Our results indicate cisplatin induces an active form of cell death in yeast, as this process was partially dependent on de novo protein synthesis and did not lead to loss of membrane integrity. Cisplatin also increased DNA condensation and fragmentation/degradation, but no significant mitochondrial dysfunction other than partial fragmentation. Co-incubation with the proteasome inhibitor MG132 increased resistance to cisplatin and, accordingly, yeast strains deficient in proteasome activity were more resistant to cisplatin than wild-type strains. Proteasome inhibitors can sensitize tumor cells to cisplatin, but protect others from cisplatin-induced cell death. Our results indicate inhibition of the proteasome protects budding yeast from cisplatin-induced cell death and validate yeast as a model to study the role of the proteasome in cisplatin-induced PCD. Elucidation of this mechanism will aid in the development of new strategies to increase the efficacy of chemotherapy.  相似文献   
776.
777.
Intergeneric coaggregation of drinking water bacteria was tested. Acinetobacter calcoaceticus was found not only to autoaggregate but also to coaggregate with four of the five other isolates (Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata, and Staphylococcus sp.). In its absence, no coaggregation was found. Interactions were lectin-saccharide mediated. The putative bridging function of A. calcoaceticus was evidenced by multispecies biofilm studies, through a strain exclusion process.  相似文献   
778.
Multi-level discrete models of genetic networks, or the more general piecewise affine differential models, provide qualitative information on the dynamics of the system, based on a small number of parameters (such as synthesis and degradation rates). Boolean models also provide qualitative information, but are based simply on the structure of interconnections. To explore the relationship between the two formalisms, a piecewise affine differential model and a Boolean model are compared, for the carbon starvation response network in E. coli. The asymptotic dynamics of both models are shown to be quite similar. This study suggests new tools for analysis and reduction of biological networks.  相似文献   
779.
The current climate crisis demands replacement of fossil energy sources with sustainable alternatives. In this scenario, second-generation bioethanol, a product of lignocellulosic biomass fermentation, represents a more sustainable alternative. However, Saccharomyces cerevisiae cannot metabolize pentoses, such as xylose, present as a major component of lignocellulosic biomass. Xylose isomerase (XI) is an enzyme that allows xylose consumption by yeasts, because it converts xylose into xylulose, which is further converted to ethanol by the pentose-phosphate pathway. Only a few XI were successfully expressed in S. cerevisiae strains. This work presents a new bacterial XI, named GR-XI 1, obtained from a Brazilian goat rumen metagenomic library. Phylogenetic analysis confirmed the bacterial origin of the gene, which is related to Firmicutes XIs. After codon optimization, this enzyme, renamed XySC1, was functionally expressed in S. cerevisiae, allowing growth in media with xylose as sole carbon source. Overexpression of XySC1 in S. cerevisiae allowed the recombinant strain to efficiently consume and metabolize xylose under aerobic conditions.  相似文献   
780.
The use of polymers as mucoadhesive materials has been explored in several drug delivery systems. It is well known that the resulting mucoadhesiveness not only depends on the polymers by themselves, but also on the way they are delivered and on the application target. However, little attention has been given to the combined effect of such characteristics. Therefore, the objective of this study is to analyze the mucoadhesion resulting from combined effects of nanocapsules produced with polymers of different ionic properties, Eudragit®RS100, Eudragit®S100, or poly(ε-caprolactone), when they are incorporated into different vehicles (suspension, hydrogel, and powder) and applied on different mucosal surfaces (mucin, porcine vaginal, and buccal mucosa). Mucoadhesion was measured by a tensile stress tester. Our findings show that polymeric self-assembling as nanocapsules improved the mucoadhesion of the polymers. Eudragit®RS100 nanocapsules have the best performance, independently of the vehicle and surface used. Regarding the vehicle, hydrogels showed higher adhesion when compared to suspensions and powders. When considering different types of surfaces, mucin presented a similar pattern like the animal mucosa, but it overestimated the mucoadhesiveness of all formulations. In conclusion, this study demonstrated that the best strategy to achieve high mucoadhesive formulations is by incorporating Eudragit®RS100 nanocapsules in hydrogels. Moreover, mucin is a suitable substrate to compare and screen different formulations but not as a conclusive estimation of the mucoadhesion values that can be achieved. These results are summarized in a decision tree that can help to understand different strategies of combination of these factors and the expected outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号