首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   12篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   3篇
  2015年   13篇
  2014年   13篇
  2013年   19篇
  2012年   24篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   9篇
  2007年   6篇
  2006年   8篇
  2005年   11篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1973年   1篇
  1937年   1篇
  1874年   1篇
排序方式: 共有190条查询结果,搜索用时 31 毫秒
101.
Various electronic properties of structurally diverse synthetic LpxC inhibitors containing oxazoline, aroylserine and thiazoline rings were calculated and correlated with biological activity. These electronic features include the magnitude and locations of 3-dimensional molecular electrostatic potentials, hydrogen bond acceptor/donor density, lowest unoccupied molecular orbital, and highest occupied molecular orbital. Strong correlation of these stereo-electronic properties with LpxC inhibitory potency reveals the potential pharmacophoric features of specific LpxC inhibitors. Thus, these pharmacophoric features of LpxC inhibitors based on electronic and surface analysis could be successfully exploited for designing more potent LpxC inhibitors.  相似文献   
102.
The Poxviridae family members vaccinia and variola virus enter mammalian cells, replicate outside the nucleus and produce virions that travel to the cell surface along microtubules, fuse with the plasma membrane and egress from infected cells toward apposing cells on actin-filled membranous protrusions. We show that cell-associated enveloped virions (CEV) use Abl- and Src-family tyrosine kinases for actin motility, and that these kinases act in a redundant fashion, perhaps permitting motility in a greater range of cell types. Additionally, release of CEV from the cell requires Abl- but not Src-family tyrosine kinases, and is blocked by STI-571 (Gleevec), an Abl-family kinase inhibitor used to treat chronic myelogenous leukemia in humans. Finally, we show that STI-571 reduces viral dissemination by five orders of magnitude and promotes survival in infected mice, suggesting possible use for this drug in treating smallpox or complications associated with vaccination. This therapeutic approach may prove generally efficacious in treating microbial infections that rely on host tyrosine kinases, and, because the drug targets host but not viral molecules, this strategy is much less likely to engender resistance compared to conventional antimicrobial therapies.  相似文献   
103.
The presumed broad tropism of poxviruses has stymied attempts to identify both the cellular receptor(s) and the viral determinant(s) for binding. Detailed studies of poxvirus binding to and infection of primary human cells have not been conducted. In particular, the determinants of target cell infection and the consequences of infection for cells involved in the generation of antiviral immune responses are incompletely understood. In this report, we show that vaccinia virus (VV) exhibits a more restricted tropism for primary hematolymphoid human cells than has been previously recognized. We demonstrate that vaccinia virus preferentially infects antigen-presenting cells (dendritic cells, monocytes/macrophages, and B cells) and activated T cells, but not resting T cells. The infection of activated T cells is permissive, with active viral replication and production of infectious progeny. Susceptibility to infection is determined by restricted expression of a cellular receptor that is induced de novo upon T-cell activation and can be removed from the cell surface by either trypsin or pronase treatment. The VV receptor expressed on activated T cells displays unique characteristics that distinguish it from the receptor used to infect cell lines in culture. The observed restricted tropism of VV may have significant consequences for the understanding of natural poxvirus infection and immunity and for poxvirus-based vaccine development.  相似文献   
104.
Chavan MM  Kawle PD  Mehta NG 《Glycobiology》2005,15(9):838-848
Within hours of turpentine injection to stimulate the acute phase (AP) response in rats, the N-acetylneuraminic acid content of plasma proteins increases and that of fucose decreases, each by about 60%. The two changes are inversely related (r = -0.97). The NeuAc/Gal ratio increases from the normal 0.75 to 1.0 on day 2 of the AP. Whereas 50% of the isolated oligosaccharides of normal plasma proteins are retarded on immobilized Ricinus communis agglutinin, those from day 2 AP plasma fail to do so. This indicates that NeuAc caps the normally Gal-terminated chains. alpha1-Acid glycoprotein (a positive AP protein), alpha1-macroglobulin (a non-AP protein), and alpha1-inhibitor3 (a negative AP protein) also show similar alterations in NeuAc/Gal ratio and decreases in Fuc. alpha2-Macroglobulin, which arises only during the AP, does not contain significant amounts of Fuc. Sambucus nigra agglutinin (alpha2,6-linked NeuAc-specific) binds a majority of plasma proteins, and binding is increased during the AP response. Maackia amurensis lectin (alpha2,3-linked NeuAc-specific) binds only three proteins in normal plasma and three additional proteins in AP plasma. The Fuc-specific Aleuria aurantia agglutinin and Lens culinaris agglutinin each detect five proteins in normal plasma. Their binding decreases during the AP response. These results show that: (1) sialylation and defucosylation of preexisting plasma proteins occur rapidly in the AP response; (2) sialylation caps the preexisting Gal-terminating oligosaccharides; and (3) the oligosaccharides of even the non-AP and negative AP proteins are modified. These changes are distinct from the elevation in the levels of protein-bound monosaccharides and the altered concanavalin A-binding profile the oligosaccharides of AP proteins acquire in diseases.  相似文献   
105.
The cDNAs encoding lactate dehydrogenase isozymes LDH-A (muscle) and LDH-B (heart) from alligator and turtle and LDH-A, LDH-B, and LDH-C (testis) from pigeon were cloned and sequenced. The evolutionary relationships among vertebrate LDH isozymes were analyzed. Contrary to the traditional belief that the turtle lineage branched off before the divergence between the lizard/alligator and bird lineages, the turtle lineage was found to be clustered with either the alligator lineage or the alligator-bird clade, while the lizard lineage was found to have branched off before the divergence between the alligator/turtle and bird lineages. The pigeon testicular LDH-C isozyme was evidently duplicated from LDH-B (heart), so it is not orthologous to the mammalian testicular LDH-C isozymes.   相似文献   
106.
Movement-deficient potato virus X (PVX) mutants tagged with the green fluorescent protein were used to investigate the role of the coat protein (CP) and triple gene block (TGB) proteins in virus movement. Mutants lacking either a functional CP or TGB were restricted to single epidermal cells. Microinjection of dextran probes into cells infected with the mutants showed that an increase in the plasmodesmal size exclusion limit was dependent on one or more of the TGB proteins and was independent of CP. Fluorescently labeled CP that was injected into epidermal cells was confined to the injected cells, showing that the CP lacks an intrinsic transport function. In additional experiments, transgenic plants expressing the PVX CP were used as rootstocks and grafted with nontransformed scions. Inoculation of the PVX CP mutants to the transgenic rootstocks resulted in cell-to-cell and systemic movement within the transgenic tissue. Translocation of the CP mutants into sink leaves of the nontransgenic scions was also observed, but infection was restricted to cells close to major veins. These results indicate that the PVX CP is transported through the phloem, unloads into the vascular tissue, and subsequently is transported between cells during the course of infection. Evidence is presented that PVX uses a novel strategy for cell-to-cell movement involving the transport of filamentous virions through plasmodesmata.  相似文献   
107.
The location of the 3a movement protein (MP) of cucumber mosaic virus (CMV) was studied by quantitative immunogold labeling of the wild-type 3a MP in leaves of Nicotiana clevelandii infected by CMV as well as by using a 3a-green fluorescent protein (GFP) fusion expressed from a potato virus X (PVX) vector. Whether expressed from CMV or PVX, the 3a MP targeted plasmodesmata and accumulated in the central cavity of the pore. Within minor veins, the most extensively labeled plasmodesmata were those connecting sieve elements and companion cells. In addition to targeting plasmodesmata, the 3a MP accumulated in the parietal layer of mature sieve elements. Confocal imaging of cells expressing the 3a-GFP fusion protein showed that the 3a MP assembled into elaborate fibrillar formations in the sieve element parietal layer. The ability of 3a-GFP, expressed from PVX rather than CMV, to enter sieve elements demonstrates that neither the CMV RNA nor the CMV coat protein is required for trafficking of the 3a MP into sieve elements. CMV virions were not detected in plasmodesmata from CMV-infected tissue, although large CMV aggregates were often found in the parietal layer of sieve elements and were usually surrounded by 3a MP. These data suggest that CMV traffics into minor vein sieve elements as a ribonucleoprotein complex that contains the viral RNA, coat protein, and 3a MP, with subsequent viral assembly occurring in the sieve element parietal layer.  相似文献   
108.
Molecular changes elicited by plants in response to fungal attack and how this affects plant–pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label‐free proteomics and NMR‐based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis‐related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea–Foc interactions.  相似文献   
109.
The accumulation of salicylic acid and H2O2 during pathogenic infection of mustard plants with Alternaria brassicae spores was investigated to understand the role of these two defense compounds in the expression of resistance. Comparisons were made between a susceptible Brassica juncea variety RH30 and a Brassica carinata variety HC1, which is known to be resistant. An oxidative burst was detected as in situ accumulation of H2O2, in both the Brassica spp. after pathogen application. However, H2O2 generation was extracellular in the resistant variety and both extra- and intracellular in the susceptible variety. Endogenous levels of SA increased over 2.5-fold in the resistant variety HC1 in response to pathogen application and this increase was observed only in conjugated SA levels. Pathogen application also led to an increase in the antioxidant enzymes, guaiacol-dependent peroxidase (GDP) and superoxide dismutase (SOD) in HC1. Exogenous SA application to leaves led to over threefold increase in the free and conjugated SA levels in both varieties. Pathogen application to the SA pretreated plants led to over 10-fold increase in endogenous SA levels in both varieties as compared to the levels in controls and this correlated with a decrease in disease symptoms in both species. SA appeared to regulate defense responses in Brassica spp. in a concentration-dependent manner. While 2.7-fold increase in endogenous SA levels (as seen in HC1) led to an induction of antioxidant enzymes, over 10-fold increases in endogenous SA levels (as seen after exogenous SA application in both varieties) brought about no induction of the antioxidant enzymes, probably because SA itself served as an antioxidant.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号