首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   6篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2016年   2篇
  2015年   10篇
  2014年   12篇
  2013年   17篇
  2012年   22篇
  2011年   11篇
  2010年   8篇
  2009年   5篇
  2008年   9篇
  2007年   4篇
  2006年   6篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1937年   1篇
排序方式: 共有153条查询结果,搜索用时 234 毫秒
41.
Protein translocation and N-glycosylation are essential coordinated cellular processes that are mediated by the translocon and the oligosaccharyl transferase (OT), respectively. The recent identification of several specific interactions between the OT subunits and the translocon provides a molecular basis for the coupling of these two processes. Data suggest that multiple OT isoforms with different affinities for the translocon and ribosome and with heterogeneous subunit composition might exist in the endoplasmic reticulum (ER) membrane, thereby providing a means of regulating protein N-glycosylation.  相似文献   
42.
43.
Over a decade ago, the gene STT3 was identified in a staurosporine and temperature sensitivity screen of yeast. Subsequently the product of this gene was shown to be a subunit of the endoplasmic reticulum-localized oligosaccharyl transferase (OT) complex. Although stt3 mutants are known to be staurosporine-sensitive, we found that mutants of other OT subunits (except ost4 Delta) are staurosporine-resistant, which indicates that this phenotype of stt3 mutants is not simply a consequence of their defect in glycosylation, as previously speculated. Staurosporine sensitivity was found to be an allele-specific phenotype restricted to cells harboring mutations in highly conserved residues in the N-terminal domain of the STT3 protein. Cells bearing mutations in one of the cytosolic-oriented loops (amino acids 158-168) in the N terminus of Stt3p were found to be specifically susceptible to staurosporine. Staurosporine is a specific inhibitor of Pkc1p, and a genetic link had previously been suggested between PKC1 and STT3. It is known that overexpression of PKC1 suppresses the staurosporine sensitivity of the stt3 mutants in an allele-specific manner, which is typical of mutants of Pkc1p cascade. It has been shown that the pkc1 null mutant exhibits lowered OT activity. Our results combined with these previous observations indicate that the N-terminal domain of Stt3p may interact with members of the Pkc1p cascade and consequently mutations in this domain result in staurosporine sensitivity. We further speculate that the Pkc1p regulates OT activity through the N-terminal domain of Stt3p, the C-terminal domain of which possesses the recognition and/or catalytic site of the OT complex.  相似文献   
44.
IL-4-induced gene-1 (Il4i1 or Fig1) initially isolated as a gene of unknown function from mouse B lymphocytes, is limited in expression to primarily immune tissues and genetically maps to a region of susceptibility to autoimmune disease. The predicted Il4i1 protein (IL4I1) sequence is most similar to apoptosis-inducing protein and Apoxin I, both l-amino acid oxidases (LAAO; Enzyme Commission 1.4.3.2). We demonstrate that IL4I1 has unique LAAO properties. IL4I1 has preference for aromatic amino acid substrates, having highest specific activity with phenylalanine. In support of this selectivity, IL4I1 is inhibited by aromatic competitors (benzoic acid and para-aminobenzoic acid), but not by nonaromatic LAAO inhibitors. Il4i1 protein and enzyme activity is found in the insoluble fraction of transient transfections, implying an association with cell membrane and possibly intracellular organelles. Indeed, IL4I1 has the unique property of being most active at acidic pH (pH 4), suggesting it may reside preferentially in lysosomes. IL4I1 is N-linked glycosylated, a requirement for lysosomal localization. Confocal microscopy of cells expressing IL4I1 translationally fused to red fluorescent protein demonstrated that IL4I1 colocalized with GFP targeted to lysosomes and with acriflavine, a green fluorescent dye that is taken up into lysosomes. Thus, IL4I1 is a unique mammalian LAAO targeted to lysosomes, an important subcellular compartment involved in Ag processing.  相似文献   
45.

Background  

Gene set enrichment testing has helped bridge the gap from an individual gene to a systems biology interpretation of microarray data. Although gene sets are defined a priori based on biological knowledge, current methods for gene set enrichment testing treat all genes equal. It is well-known that some genes, such as those responsible for housekeeping functions, appear in many pathways, whereas other genes are more specialized and play a unique role in a single pathway. Drawing inspiration from the field of information retrieval, we have developed and present here an approach to incorporate gene appearance frequency (in KEGG pathways) into two current methods, Gene Set Enrichment Analysis (GSEA) and logistic regression-based LRpath framework, to generate more reproducible and biologically meaningful results.  相似文献   
46.
The apical annuli are among the most intriguing and understudied structures in the cytoskeleton of the apicomplexan parasite Toxoplasma gondii. We mapped the proteome of the annuli in Toxoplasma by reciprocal proximity biotinylation (BioID), and validated five apical annuli proteins (AAP1–5), Centrin2, and an apical annuli methyltransferase. Moreover, inner membrane complex (IMC) suture proteins connecting the alveolar vesicles were also detected and support annuli residence within the sutures. Super‐resolution microscopy identified a concentric organisation comprising four rings with diameters ranging from 200 to 400 nm. The high prevalence of domain signatures shared with centrosomal proteins in the AAPs together with Centrin2 suggests that the annuli are related and/or derived from the centrosomes. Phylogenetic analysis revealed that the AAPs are conserved narrowly in coccidian, apicomplexan parasites that multiply by an internal budding mechanism. This suggests a role in replication, for example, to provide pores in the mother IMC permitting exchange of building blocks and waste products. However, presence of multiple signalling domains and proteins are suggestive of additional functions. Knockout of AAP4, the most conserved compound forming the largest ring‐like structure, modestly decreased parasite fitness in vitro but had no significant impact on acute virulence in vivo. In conclusion, the apical annuli are composed of coiled‐coil and signalling proteins assembled in a pore‐like structure crossing the IMC barrier maintained during internal budding.  相似文献   
47.
The presence of α-synuclein aggregates in the characteristic Lewy body pathology seen in idiopathic Parkinson''s disease (PD), together with α-synuclein gene mutations in familial PD, places α-synuclein at the center of PD pathogenesis. Decreased levels of the chaperone-mediated autophagy (CMA) proteins LAMP-2A and hsc70 in PD brain samples suggests compromised α-synuclein degradation by CMA may underpin the Lewy body pathology. Decreased CMA protein levels were not secondary to the various pathological changes associated with PD, including mitochondrial respiratory chain dysfunction, increased oxidative stress and proteasomal inhibition. However, decreased hsc70 and LAMP-2A protein levels in PD brains were associated with decreases in their respective mRNA levels. MicroRNA (miRNA) deregulation has been reported in PD brains and we have identified eight miRNAs predicted to regulate LAMP-2A or hsc70 expression that were reported to be increased in PD. Using a luciferase reporter assay in SH-SY5Y cells, four and three of these miRNAs significantly decreased luciferase activity expressed upstream of the lamp-2a and hsc70 3′UTR sequences respectively. We confirmed that transfection of these miRNAs also decreased endogenous LAMP-2A and hsc70 protein levels respectively and resulted in significant α-synuclein accumulation. The analysis of PD brains confirmed that six and two of these miRNAs were significantly increased in substantia nigra compacta and amygdala respectively. These data support the hypothesis that decreased CMA caused by miRNA-induced downregulation of CMA proteins plays an important role in the α-synuclein pathology associated with PD, and opens up a new avenue to investigate PD pathogenesis.  相似文献   
48.
The affinity of arsenic towards the cytoskeleton leading to disturbance of tubulin polymerization is well known. Tubulin undergoes extensive posttranslational modifications which effect stability and dynamics of microtubules but little is known about the effect of antimicrotubule drugs on their distribution and function in kinetoplastid parasites such as Leishmania. The current study was undertaken to investigate the effect of continuous sodium arsenite exposure on the tubulin distribution profile in wild type and sodium arsenite resistant Leishmania donovani together with effect of paclitaxel, a tubulin-polymerizing agent, on that distribution using confocal microscopy. Immunofluorescence studies using specific monoclonal antibodies against alpha-tubulin and posttranslationally modified tubulins (acetylated and tyrosinated) have revealed distinct differences in the organization of microtubule arrays in wild type and sodium arsenite resistant L. donovani that is further affected by paclitaxel treatment. Microtubules are arranged in spiral arrays in wild type as compared to the longitudinal arrays in arsenite resistant L. donovani. The difference in microtubular structure organization may explain the parasite response to continuous drug pressure and illustrate the fundamental impact of arsenite on microtubules in arsenite resistant L. donovani.  相似文献   
49.
50.
The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide–induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号