首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   25篇
  2022年   3篇
  2021年   8篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   10篇
  2015年   15篇
  2014年   16篇
  2013年   12篇
  2012年   23篇
  2011年   23篇
  2010年   10篇
  2009年   11篇
  2008年   17篇
  2007年   16篇
  2006年   13篇
  2005年   8篇
  2004年   14篇
  2003年   6篇
  2002年   7篇
  2001年   12篇
  2000年   6篇
  1999年   9篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1989年   11篇
  1988年   8篇
  1987年   2篇
  1986年   4篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1979年   5篇
  1978年   2篇
  1977年   5篇
  1976年   8篇
  1975年   2篇
  1974年   2篇
  1973年   6篇
  1971年   3篇
  1966年   1篇
  1958年   1篇
  1956年   2篇
  1952年   1篇
排序方式: 共有355条查询结果,搜索用时 46 毫秒
31.
Continuous focused ultrasound (cFUS) has been widely used for thermal ablation of tissues, relying on continuous exposures to generate temperatures necessary to induce coagulative necrosis. Pulsed FUS (pFUS) employs non-continuous exposures that lower the rate of energy deposition and allow cooling to occur between pulses, thereby minimizing thermal effects and emphasizing effects created by non-thermal mechanisms of FUS (i.e., acoustic radiation forces and acoustic cavitation). pFUS has shown promise for a variety of applications including drug and nanoparticle delivery; however, little is understood about the effects these exposures have on tissue, especially with regard to cellular pro-homing factors (growth factors, cytokines, and cell adhesion molecules). We examined changes in murine hamstring muscle following pFUS or cFUS and demonstrate that pFUS, unlike cFUS, has little effect on the histological integrity of muscle and does not induce cell death. Infiltration of macrophages was observed 3 and 8 days following pFUS or cFUS exposures. pFUS increased expression of several cytokines (e.g., IL-1α, IL-1β, TNFα, INFγ, MIP-1α, MCP-1, and GMCSF) creating a local cytokine gradient on days 0 and 1 post-pFUS that returns to baseline levels by day 3 post-pFUS. pFUS exposures induced upregulation of other signaling molecules (e.g., VEGF, FGF, PlGF, HGF, and SDF-1α) and cell adhesion molecules (e.g., ICAM-1 and VCAM-1) on muscle vasculature. The observed molecular changes in muscle following pFUS may be utilized to target cellular therapies by increasing homing to areas of pathology.  相似文献   
32.
33.
Echovirus type 12 (EV12), an Enterovirus of the Picornaviridae family, uses the complement regulator decay-accelerating factor (DAF, CD55) as a cellular receptor. We have calculated a three-dimensional reconstruction of EV12 bound to a fragment of DAF consisting of short consensus repeat domains 3 and 4 from cryo-negative stain electron microscopy data (EMD code 1057). This shows that, as for an earlier reconstruction of the related echovirus type 7 bound to DAF, attachment is not within the viral canyon but occurs close to the 2-fold symmetry axes. Despite this general similarity our reconstruction reveals a receptor interaction that is quite different from that observed for EV7. Fitting of the crystallographic co-ordinates for DAF(34) and EV11 into the reconstruction shows a close agreement between the crystal structure of the receptor fragment and the density for the virus-bound receptor, allowing unambiguous positioning of the receptor with respect to the virion (PDB code 1UPN). Our finding that the mode of virus-receptor interaction in EV12 is distinct from that seen for EV7 raises interesting questions regarding the evolution and biological significance of the DAF binding phenotype in these viruses.  相似文献   
34.
Uncoupling protein-3 (UCP3) is a poorly understood mitochondrial inner membrane protein expressed predominantly in skeletal muscle. The aim of this study was to examine the effects of the absence or constitutive physiological overexpression of UCP3 on whole body energy metabolism, glucose tolerance, and muscle triglyceride content. Congenic male UCP3 knockout mice (Ucp3-/-), wild-type, and transgenic UCP3 overexpressing (UCP3Tg) mice were fed a 10% fat diet for 4 or 8 mo after they were weaned. UCP3Tg mice had lower body weights and were less metabolically efficient than wild-type or Ucp3-/- mice, but they were not hyperphagic. UCP3Tg mice had smaller epididymal white adipose tissue and brown adipose tissue (BAT) depots; however, there were no differences in muscle weights. Glucose and insulin tolerance tests revealed that both UCP3Tg and Ucp3-/- mice were protected from development of impaired glucose tolerance and were more sensitive to insulin. 2-Deoxy-D-[1-3H]glucose tracer studies showed increased uptake of glucose into BAT and increased storage of liver glycogen in Ucp3-/- mice. Assessments of intramuscular triglyceride (IMTG) revealed decreases in quadriceps of UCP3Tg mice compared with wild-type and Ucp3-/- mice. When challenged with a 45% fat diet, Ucp3-/- mice showed increased accumulation of IMTG compared with wild-type mice, which in turn had greater IMTG than UCP3Tg mice. Results are consistent with a role for UCP3 in preventing accumulation of triglyceride in both adipose tissue and muscle.  相似文献   
35.
36.
The ability to rapidly identify and quantify a microbial strain in a complex environmental sample has widespread applications in ecology, epidemiology, and industry. In this study, we describe a rapid method to obtain functionally specific genetic markers that can be used in conjunction with standard or real-time polymerase chain reaction (PCR) to determine the abundance of target fungal strains in selected environmental samples. The method involves sequencing of randomly cloned AFLP (amplified fragment length polymorphism) products from the target organism and the design of PCR primers internal to the AFLP fragments. The strain-specific markers were used to determine the fate of three industrially relevant fungi, Aspergillus niger, Aspergillus oryzae, and Chaetomium globosum, during a 4 month soil microcosm experiment. The persistence of each of the three fungal strains inoculated separately into intact soil microcosms was determined by PCR analyses of DNA directly extracted from soil. Presence and absence data based on standard PCR and quantification of the target DNA by real-time PCR showed that all three strains declined after inoculation (approximately 14-, 32-, and 4-fold for A. niger, A. oryzae, and C. globosum, respectively) but remained detectable at the end of the experiment, suggesting that these strains would survive for extended periods if released into nature.  相似文献   
37.
Aeromonas punctata is the causative agent of septicemia, diarrhea, wound infections, meningitis, peritonitis, and infections of the joints, bones and eyes. Bacteriophages are often considered alternative agents for controlling bacterial infection and contamination. In this study, we described the isolation and preliminary characterization of bacteriophage IHQ1 (family Myoviridae) active against the Gram-negative bacterial strain A. punctata. This virulent bacteriophage was isolated from stream water sample. Genome analysis indicated that phage IHQ1 was a double-stranded DNA virus with an approximate genome size of 25–28 kb. The initial characterization of this newly isolated phage showed that it has a narrow host range and infects only A. punctata as it failed to infect seven other clinically isolated pathogenic strains, i.e., methicillin-resistant Staphylococcus aureus 6403, MRSA 17644, Acinetobacter 33408, Acinetobacter 1172, Pseudomonas aeruginosa 22250, P. aeruginosa 11219, and Escherichia coli. Proteomic pattern of phage IHQ1, generated by SDS-PAGE using purified phage particles, showed three major and three minor protein bands with molecular weights ranging from 25 to 70 kDa. The adsorption rate of phage IHQ1 to the host bacterium was also determined, which was significantly enhanced by the addition of 10 mM CaCl2. From the single-step growth experiment, it was inferred that the latent time period of phage IHQ1 was 24 min and a burst size of 626 phages per cell. Moreover, the pH and thermal stability of phage IHQ1 were also investigated. The maximum stability of the phage was observed at optimal pH 7.0, and it was totally unstable at extreme acidic pH 3; however, it was comparatively stable at alkaline pH 11.0. At 37°C the phage showed maximum number of plaques, and the viability was almost 100%. The existence of Aeromonas bacteriophage is very promising for the eradication of this opportunistic pathogen and also for future applications such as the design of new detection and phage typing (diagnosis) methods. The specificity of the bacteriophage for A. punctata makes it an attractive candidate for phage therapy of A. punctata infections.  相似文献   
38.
We previously demonstrated that exonic selectivity for frameshift mutation (exon 10 over exon 3) of ACVR2 in mismatch repair (MMR)-deficient cells is partially determined by 6 nucleotides flanking 5' and 3' of each microsatellite. Substitution of flanking nucleotides surrounding the exon 10 microsatellite with those surrounding the exon 3 microsatellite greatly diminished heteroduplex (A(7)/T(8)) and full (A(7)/T(7)) mutation, while substitution of flanking nucleotides from exon 3 with those from exon 10 enhanced frameshift mutation. We hypothesized that specific individual nucleotide(s) within these flanking sequences control ACVR2 frameshift mutation rates. Only the 3rd nucleotide 5' of the microsatellite, and 3rd, 4th, and 5th nucleotides 3' of the microsatellite were altered from the native flanking sequences and these locations were individually altered (sites A, B, C, and D, respectively). Constructs were cloned +1bp out-of-frame of EGFP, allowing a -1bp frameshift to express EGFP. Plasmids were stably transfected into MMR-deficient cells. Non-fluorescent cells were sorted, cultured for 35 days, and harvested for flow cytometry and DNA-sequencing. Site A (C to T) and B (G to C) in ACVR2 exon 10 decreased both heteroduplex and full mutant as much as the construct containing all 4 alterations. For ACVR2 exon 3, site A (T to C), C (A to G), and D (G to C) are responsible for increased heteroduplex formation, whereas site D is responsible for full mutant formation by ACVR2 exon 10 flanking sequences. Exonic selectivity for frameshift mutation within ACVR2's sequence context is specifically controlled by individual nucleotides flanking each microsatellite.  相似文献   
39.
40.
Plant growth promotion is a multigenic process under the influence of many factors; therefore an understanding of these processes and the functions regulated may have profound implications. Present study reports microarray analysis of Arabidopsis thaliana plants inoculated with Pseudomonas putida MTCC5279 (MTCC5279) which resulted in significant increase in growth traits as compared with non-inoculated control. The gene expression changes, represented by oligonucleotide array (24652 genes) have been studied to gain insight into MTCC5279 assisted plant growth promotion in Arabidopsis thaliana. MTCC5279 induced upregulated Arabidopsis thaliana genes were found to be involved in maintenance of genome integrity (At5g20850), growth hormone (At3g23890 and At4g36110), amino acid synthesis (At5g63890), abcissic acid (ABA) signaling and ethylene suppression (At2g29090, At5g17850), Ca+2 dependent signaling (At3g57530) and induction of induced systemic resistance (At2g46370, At2g44840). The genes At3g32920 and At2g15890 which are suggested to act early in petal, stamen and embryonic development are among the downregulated genes. We report for the first time MTCC5279 assisted repression of At3g32920, a putative DNA repair protein involved in recombination and DNA strand transfer in a process of rapid meiotic and mitotic division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号