全文获取类型
收费全文 | 673篇 |
免费 | 59篇 |
国内免费 | 11篇 |
专业分类
743篇 |
出版年
2024年 | 2篇 |
2023年 | 3篇 |
2022年 | 11篇 |
2021年 | 20篇 |
2020年 | 3篇 |
2019年 | 7篇 |
2018年 | 7篇 |
2017年 | 15篇 |
2016年 | 17篇 |
2015年 | 22篇 |
2014年 | 35篇 |
2013年 | 38篇 |
2012年 | 57篇 |
2011年 | 65篇 |
2010年 | 38篇 |
2009年 | 27篇 |
2008年 | 45篇 |
2007年 | 35篇 |
2006年 | 34篇 |
2005年 | 23篇 |
2004年 | 23篇 |
2003年 | 28篇 |
2002年 | 24篇 |
2001年 | 12篇 |
2000年 | 18篇 |
1999年 | 16篇 |
1998年 | 10篇 |
1997年 | 5篇 |
1996年 | 3篇 |
1995年 | 5篇 |
1994年 | 3篇 |
1993年 | 5篇 |
1992年 | 7篇 |
1991年 | 13篇 |
1990年 | 6篇 |
1989年 | 2篇 |
1988年 | 9篇 |
1987年 | 6篇 |
1986年 | 14篇 |
1985年 | 6篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1978年 | 3篇 |
1976年 | 4篇 |
1974年 | 3篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 2篇 |
排序方式: 共有743条查询结果,搜索用时 15 毫秒
61.
Heme oxygenase-1 (HO-1) is a stress-responsive enzyme with potent anti-oxidant and anti-inflammatory activities. Previous studies have shown that systemic induction of HO-1 by chemical inducers reduces adiposity and improves insulin sensitivity. To dissect the specific function of HO-1 in adipose tissue, we generated transgenic mice with adipose HO-1 overexpression using the adipocyte-specific aP2 promoter. The transgenic (Tg) mice exhibit similar metabolic phenotype as wild type (WT) control under chow-fed condition. High fat diet (HFD) challenge significantly increased the body weights of WT and Tg mice to a similar extent. Likewise, HFD-induced glucose intolerance and insulin resistance were not much different between WT and Tg mice. Analysis of the adipose tissue gene expression revealed that the mRNA levels of adiponectin and interleukin-10 were significantly higher in chow diet-fed Tg mice as compared to WT counterparts, whereas HFD induced downregulation of adiponectin gene expression in both Tg and WT mice to a similar level. HFD-induced proinflammatory cytokine expression in adipose tissues were comparable between WT and transgenic mice. Nevertheless, immunohistochemistry and gene expression analysis showed that the number of infiltrating macrophages with preferential expression of M2 markers was significantly higher in the adipose tissue of obese Tg mice than WT mice. Further experiment demonstrated that myeloid cells from Tg mice expressed higher level of HO-1 and exhibited greater migration response toward chemoattractant in vitro. Collectively, these data indicate that HO-1 overexpression in adipocytes does not protect against HFD-induced obesity and the development of insulin resistance in mice. 相似文献
62.
63.
Nguyen Hoang Loc Vo Chau Tuan Doan Huu Nhat Binh Truong Thi Bich Phuong Tae-Geum Kim Moon-Sik Yang 《Biotechnology and Bioprocess Engineering》2009,14(5):619-624
We developed a cell suspension culture system for zedoary (Curcuma zedoaria Roscoe), using 100 g fresh weight inoculum in a batch culture. The maximum cell biomass of 68.46 g/L fresh weight was obtained
after 14 days of culture in a 10 L bioreactor with a pitch-blade impeller maintained at an agitation speed of 150 rpm and
an aeration rate of 2.5 L/min. The accumulation of sesquiterpenes and polysaccharide in zedoary cells from 2 to 18 days was
measured by HPLC and a phenol-sulfuric acid assay, respectively. The total polysaccharide concentration increased between
2 to 10 days of culture and reached a maximum value of 6.55%. HPLC revealed several eluted peaks of sesquiterpenes, which
increased in amplitude from days 2 to 10. Furthermore, our results indicated that biotransformation occurred in the cell suspension,
transforming certain sesquiterpenes into other types during culture. 相似文献
64.
Shim H Wang CT Chen YL Chau VQ Fu KG Yang J McQuiston AR Fisher RA Chen CK 《The Journal of biological chemistry》2012,287(18):14873-14879
Two members of the R7 subfamily of regulators of G protein signaling, RGS7 and RGS11, are present at dendritic tips of retinal depolarizing bipolar cells (DBCs). Their involvement in the mGluR6/Gα(o)/TRPM1 pathway that mediates DBC light responses has been implicated. However, previous genetic studies employed an RGS7 mutant mouse that is hypomorphic, and hence the exact role of RGS7 in DBCs remains unclear. We have made a true RGS7-null mouse line with exons 6-8 deleted. The RGS7(-/-) mouse is viable and fertile but smaller in body size. Electroretinogram (ERG) b-wave implicit time in young RGS7(-/-) mice is prolonged at eye opening, but the phenotype disappears at 2 months of age. Expression levels of RGS6 and RGS11 are unchanged in RGS7(-/-) retina, but the Gβ5S level is significantly reduced. By characterizing a complete RGS7 and RGS11 double knock-out (711dKO) mouse line, we found that Gβ5S expression in the retinal outer plexiform layer is eliminated, as is the ERG b-wave. Ultrastructural defects akin to those of Gβ5(-/-) mice are evident in 711dKO mice. In retinas of mice lacking RGS6, RGS7, and RGS11, Gβ5S is undetectable, whereas levels of the photoreceptor-specific Gβ5L remain unchanged. Whereas RGS6 alone sustains a significant amount of Gβ5S expression in retina, the DBC-related defects in Gβ5(-/-) mice are caused solely by a combined loss of RGS7 and RGS11. Our data support the notion that the role of Gβ5 in the retina, and likely in the entire nervous system, is mediated exclusively by R7 RGS proteins. 相似文献
65.
Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products. Comparison to their putative rabbit homologs, E2(20K) AND E2(32K). 总被引:13,自引:0,他引:13
The recombinant yeast RAD6 and CDC34 gene products were expressed in Escherichia coli extracts and purified to apparent homogeneity. The physical and catalytic properties of RAD6 and CDC34 were similar but distinct from their putative rabbit reticulocyte homologs, E2(20k) and E2(32k), respectively. Like their reticulocyte counterparts, RAD6 and CDC34 are bifunctional enzymes competent in both ubiquitin:protein ligase (E3)-independent and E3-dependent conjugation reactions. RAD6 and E2(20k) exhibit marked specificity for the conjugation of core histones and catalyze the processive ligation of up to three ubiquitin moieties directly to such model substrates. RAD6 differed from its putative E2(20k) homolog in exhibiting simple saturation behavior in the kinetics of histone conjugation and in being unable to distinguish kinetically between core histones H2A and H2B, yielding identical values of kcat (1.9 min-1) and Km (20 microM). A slow rate of multiubiquitination involving formation of extended ubiquitin homopolymers on the histones was also observed with RAD6 and E2(20k). Comparison of conjugate patterns among native, reductively methylated, and K48R ubiquitin variants demonstrated that the linkage between ubiquitin moieties formed by E2(20k) and RAD6 was not through Lys-48 of ubiquitin, the site previously demonstrated as a strong signal for degradation of the target protein. In contrast, CDC34 differs from its putative homolog, E2(32k), in showing a specificity for conjugation to bovine serum albumin rather than to core histones. Both CDC34 and E2(32k) exhibit a marked kinetic selectivity for processive multiubiquitination via Lys-48 of ubiquitin. Calculations based on a model ubiquitin conjugation reaction indicated that E2(32k) and CDC34 preferentially catalyzed multiubiquitination over ligation of the polypeptide directly to target proteins. Formation of such multiubiquitin homopolymers by E2(32k) and CDC34 suggests these enzymes may commit their respective target proteins to degradation via an E3-independent pathway. 相似文献
66.
S Koyasu R E Hussey L K Clayton A Lerner R Pedersen P Delany-Heiken F Chau E L Reinherz 《The EMBO journal》1994,13(4):784-797
67.
The liver is one of the few organs that possess a high capacity to regenerate after liver failure or liver damage. The parenchymal cells of the liver, hepatocytes, contribute to the majority of the regeneration process. Thus, hepatocyte transplantation presents an alternative method to treating liver damage. However, shortage of hepatocytes and difficulties in maintaining primary hepatocytes still remain key obstacles that researchers must overcome before hepatocyte transplantation can be used in clinical practice. The unique properties of pluripotent stem cells (PSCs) and induced pluripotent stem cells (iPSCs) have provided an alternative approach to generating enough functional hepatocytes for cellular therapy. In this review, we will present a brief overview on the current state of hepatocyte differentiation from PSCs and iPSCs. Studies of liver regenerative processes using different cell sources (adult liver stem cells, hepatoblasts, hepatic progenitor cells, etc.) will be described in detail as well as how this knowledge can be applied towards optimizing culture conditions for the maintenance and differentiation of these cells towards hepatocytes. As the outlook of stem cell-derived therapy begins to look more plausible, researchers will need to address the challenges we must overcome in order to translate stem cell research to clinical applications. 相似文献
68.
Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. 总被引:20,自引:6,他引:20 下载免费PDF全文
D Finley S Sadis B P Monia P Boucher D J Ecker S T Crooke V Chau 《Molecular and cellular biology》1994,14(8):5501-5509
The degradation of many proteins requires their prior attachment to ubiquitin. Proteolytic substrates are characteristically multiubiquitinated through the formation of ubiquitin-ubiquitin linkages. Lys-48 of ubiquitin can serve as a linkage site in the formation of such chains and is required for the degradation of some substrates of this pathway in vitro. We have characterized the recessive and dominant effects of a Lys-48-to-Arg mutant of ubiquitin (UbK48R) in Saccharomyces cerevisiae. Although UbK48R is expected to terminate the growth of Lys-48 multiubiquitin chains and thus to exert a dominant negative effect on protein turnover, overproduction of UbK48R in wild-type cells results in only a weak inhibition of protein turnover, apparently because the mutant ubiquitin can be removed from multiubiquitin chains. Surprisingly, expression of UbK48R complements several phenotypes of polyubiquitin gene (UB14) deletion mutants. However, UbK48R cannot serve as a sole source of ubiquitin in S. cerevisiae, as evidenced by its inability to rescue the growth of ubi1 ubi2 ubi3 ubi4 quadruple mutants. When provided solely with UbK48R, cells undergo cell cycle arrest with a terminal phenotype characterized by replicated DNA, mitotic spindles, and two-lobed nuclei. Under these conditions, degradation of amino acid analog-containing proteins is severely inhibited. Thus, multiubiquitin chains containing Lys-48 linkages play a critical role in protein degradation in vivo. 相似文献
69.
Tau, MAP2, and MAP4 are members of a microtubule-associated protein (MAP) family that are each expressed as "3-repeat" and "4-repeat" isoforms. These isoforms arise from tightly controlled tissue-specific and/or developmentally regulated alternative splicing of a 31-amino acid long "inter-repeat:repeat module," raising the possibility that different MAP isoforms may possess some distinct functional capabilities. Consistent with this hypothesis, regulatory mutations in the human tau gene that disrupt the normal balance between 3-repeat and 4-repeat tau isoform expression lead to a collection of neurodegenerative diseases known as FTDP-17 (fronto-temporal dementias and Parkinsonism linked to chromosome 17), which are characterized by the formation of pathological tau filaments and neuronal cell death. Unfortunately, very little is known regarding structural and functional differences between the isoforms. In our previous analyses, we focused on 4-repeat tau structure and function. Here, we investigate 3-repeat tau, generating a series of truncations, amino acid substitutions, and internal deletions and examining the functional consequences. 3-Repeat tau possesses a "core microtubule binding domain" composed of its first two repeats and the intervening inter-repeat. This observation is in marked contrast to the widely held notion that tau possesses multiple independent tubulin-binding sites aligned in sequence along the length of the protein. In addition, we observed that the carboxyl-terminal sequences downstream of the repeat region make a strong but indirect contribution to microtubule binding activity in 3-repeat tau, which is in contrast to the negligible effect of these same sequences in 4-repeat tau. Taken together with previous work, these data suggest that 3-repeat and 4-repeat tau assume complex and distinct structures that are regulated differentially, which in turn suggests that they may possess isoform-specific functional capabilities. The relevance of isoform-specific structure and function to normal tau action and the onset of neurodegenerative disease are discussed. 相似文献
70.