首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1443篇
  免费   85篇
  1528篇
  2023年   8篇
  2022年   21篇
  2021年   46篇
  2020年   15篇
  2019年   26篇
  2018年   31篇
  2017年   23篇
  2016年   32篇
  2015年   74篇
  2014年   87篇
  2013年   120篇
  2012年   124篇
  2011年   105篇
  2010年   70篇
  2009年   64篇
  2008年   62篇
  2007年   93篇
  2006年   76篇
  2005年   65篇
  2004年   61篇
  2003年   50篇
  2002年   38篇
  2001年   22篇
  2000年   21篇
  1999年   17篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   18篇
  1991年   16篇
  1990年   8篇
  1989年   5篇
  1988年   10篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   8篇
  1978年   11篇
  1977年   3篇
  1975年   3篇
  1974年   4篇
  1967年   3篇
  1966年   5篇
排序方式: 共有1528条查询结果,搜索用时 15 毫秒
31.
Molecular Biology Reports - A 26-year-old male had a history of frequent bowel movements, mushy stool with mucus and loss of 25 kg body weight in 6 months was diagnosed as a case...  相似文献   
32.
A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the molecular mechanism underlying complex quantitative traits at a genome-wide scale leading to fast-paced marker-assisted genetic improvement in diverse crop plants, including chickpea.  相似文献   
33.
1,3-Propanediol, a valuable bifunctional molecule, can be produced from renewable resources using microorganisms. It has several promising properties for many synthetic reactions, particularly for polymer and cosmetic industries. By virtue of being a natural product, relevant biochemical pathways can be harnessed into fermentation processes to produce 1,3-propanediol. Various strategies for the microbial production of 1,3-propanediol are reviewed and compared in this article with their promises and constraints. Furthermore, genetic and metabolic engineering could significantly improve product yields and overcome the limitations of fermentation technology. Present review gives an overview on 1,3-propanediol production by wild and recombinant strains. It also attempts to encompass the various issues concerned in utilization of crude glycerol for 1,3-propanediol production, with particular emphasis laid on biodiesel industries. This review also summarizes the present state of strategies studied for the downstream processing and purification of biologically produced 1,3-propanediol. The future prospect of 1,3-propanediol and its potential as a major bulk chemical are discussed under the light of the current research.  相似文献   
34.
The extracellular matrix (ECM) or cell wall is a dynamic system and serves as the first line mediator in cell signaling to perceive and transmit extra- and intercellular signals in many pathways. Although ECM is a conserved compartment ubiquitously present throughout evolution, a compositional variation does exist among different organisms. ECM proteins account for 10% of the ECM mass, however, comprise several hundreds of different molecules with diverse functions. To understand the function of ECM proteins, we have developed the cell wall proteome of a crop legume, chickpea (Cicer arietinum). This comprehensive overview of the proteome would provide a basis for future comparative proteomic efforts for this important crop. Proteomic analyses revealed new ECM proteins of unknown functions vis-à-vis the presence of many known cell wall proteins. In addition, we report here evidence for the presence of unexpected proteins with known biochemical activities, which have never been associated with ECM.  相似文献   
35.
36.
RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.  相似文献   
37.
Identification of Arabidopsis rat mutants   总被引:5,自引:0,他引:5       下载免费PDF全文
Limited knowledge currently exists regarding the roles of plant genes and proteins in the Agrobacterium tumefaciens-mediated transformation process. To understand the host contribution to transformation, we carried out root-based transformation assays to identify Arabidopsis mutants that are resistant to Agrobacterium transformation (rat mutants). To date, we have identified 126 rat mutants by screening libraries of T-DNA insertion mutants and by using various “reverse genetic” approaches. These mutants disrupt expression of genes of numerous categories, including chromatin structural and remodeling genes, and genes encoding proteins implicated in nuclear targeting, cell wall structure and metabolism, cytoskeleton structure and function, and signal transduction. Here, we present an update on the identification and characterization of these rat mutants.  相似文献   
38.
Influenza A virus infects 5-20% of the population annually, resulting in ~35,000 deaths and significant morbidity. Current treatments include vaccines and drugs that target viral proteins. However, both of these approaches have limitations, as vaccines require yearly development and the rapid evolution of viral proteins gives rise to drug resistance. In consequence additional intervention strategies, that target host factors required for the viral life cycle, are under investigation. Here we employed arrayed whole-genome siRNA screening strategies to identify cell-autonomous molecular components that are subverted to support H1N1 influenza A virus infection of human bronchial epithelial cells. Integration across relevant public data sets exposed druggable gene products required for epithelial cell infection or required for viral proteins to deflect host cell suicide checkpoint activation. Pharmacological inhibition of representative targets, RGGT and CHEK1, resulted in significant protection against infection of human epithelial cells by the A/WS/33 virus. In addition, chemical inhibition of RGGT partially protected against H5N1 and the 2009 H1N1 pandemic strain. The observations reported here thus contribute to an expanding body of studies directed at decoding vulnerabilities in the command and control networks specified by influenza virulence factors.  相似文献   
39.
Summary By mutagenizing a cIts (cI857) lysogen, a mutant has been isolated with a wild-type phenotype. This mutant phage lysogenizes with low efficiency and produces a low burst. Though the initial rates of repressor synthesis in Escherichia coli after infection with wild-type and mutant are the same, the maximum level of repressor that is synthesized in the latter case is only about 30% of that synthesized in the former. Virulent plates on the lysogen of mutant with slightly less efficiency producing very tiny plaques. Operator-binding studies made in vitro with purified mutant and wild-type repressors show that the binding curve of the former repressor is a rectangular hyperbola while that of the latter is sigmoid. The half-lives of the complexes of mutant and wild-type repressors with right operator are 133 and 27 min, respectively. All these results suggest that the mutant repressor possibly has a higher affinity for the operators. This mutant has been named cIha (ha=high affinity).  相似文献   
40.
A chip-based biosensor technology using surface plasmon resonance (SPR) was developed for studying the interaction of ligands and G protein-coupled receptors (GPCRs). GPCRs, the fourth largest superfamily in the human genome, are the largest class of targets for drug discovery. We have expressed the three subtypes of alpha(2)-adrenergic receptor (alpha(2)-AR), a prototypical GPCR as functional fusion proteins in baculovirus-infected insect cells. The localization of the expressed receptor was observed in intracellular organelles, as detected by eGFP fluorescence. In addition, the deletion mutants of alpha(2B)-AR, with a deletion in the 3rd intracellular loop, exhibited unaltered K(d) values and enhanced stability, thus making them more promising candidates for crystallization. SPR demonstrated that small molecule ligands can bind the detergent-solubilized receptor, thus proving that alpha(2)-AR is active even in a lipid-free environment. The K(d) values obtained from the biosensor analysis and traditional ligand binding studies correlate well with each other. This is the first demonstration of the binding of a small molecule to the detergent-solubilized state of alpha(2)-ARs and interaction of low-molecular mass-ligands in real time in a label-free environment. This technology will also allow the development of high throughput platform for screening a large number of compounds for generation of leads.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号