首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   15篇
  2021年   5篇
  2020年   6篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   14篇
  2015年   11篇
  2014年   7篇
  2013年   18篇
  2012年   23篇
  2011年   13篇
  2010年   9篇
  2009年   14篇
  2008年   12篇
  2007年   11篇
  2006年   8篇
  2005年   11篇
  2004年   5篇
  2003年   8篇
  2002年   9篇
  2001年   8篇
  2000年   7篇
  1999年   10篇
  1998年   11篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   7篇
  1988年   4篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
  1973年   4篇
  1972年   1篇
  1948年   1篇
排序方式: 共有292条查询结果,搜索用时 46 毫秒
111.
Brown algae are multicellular photosynthetic marine organisms, ubiquitous on rocky intertidal shores at cold and temperate latitudes. Nevertheless, little is known about many aspects of their biology, particularly their development. Given their phylogenetic distance (1.6 billion years) from other plant organisms (land plants, and green and red algae), brown algae harbor a high, as-yet undiscovered diversity of biological mechanisms governing their development. They also show great morphological plasticity, responding to specific environmental constraints, such as sea currents, reduced light availability, grazer attacks, desiccation and UV exposure. Here, we show that brown algal morphogenesis is rather simple and flexible, and review recent genomic data on the cellular and molecular mechanisms known to date that can possibly account for this developmental strategy.  相似文献   
112.
The production of cysteine protease by two human osteosarcoma cell lines (MG-63 and SaOS2) was analyzed, as well as their modulation by interleukin 1beta (hIL-1 beta), interleukin 6 (hIL-6), insulin growth factor-1 (hIGF-1), oncostatin M (hOSM), leukemia inhibitory factor (hLIF) and growth hormone (hGH). Cysteine protease activities were detected using a synthetic substrate. The protease activities (especially cathepsin L activity) of both cell lines were increased significantly in the presence of hIL-1 beta, hIL-6 and hOSM. In contrast, hIGF-1 and hGH decreased these activities, and no effect was detectable in the presence of hLIF. The addition of antibodies against the gp-130 chain of the hIL-6 and hOSM receptors totally inhibited the stimulating effect of these two cytokines on cysteine protease activities. In increasing collagen type I degradation, hIL-1beta, hIL-6 and hOSM could be involved in bone resorption, whereas the inhibitory action of hIGF-1 and hGH on collagen type I degradation suggest that this factor could play a role in bone formation.  相似文献   
113.
114.
Proteomics discovery leads to a list of potential protein biomarkers that have to be subsequently verified and validated with a statistically viable number of patients. Although the most sensitive, the development of an ELISA test is time-consuming when antibodies are not available and need to be conceived. Mass spectrometry analysis driven in quantitative multiple reaction monitoring mode is now appearing as a promising alternative to quantify proteins in biological fluids. However, all the studies published to date describe limits of quantitation in the low μg/ml range when no immunoenrichment of the target protein is applied, whereas the concentration of known clinical biomarkers is usually in the ng/ml range. Using prostate-specific antigen as a model biomarker, we now provide proof of principle that mass spectrometry enables protein quantitation in a concentration range of clinical interest without immunoenrichment. We have developed and optimized a robust sample processing method combining albumin depletion, trypsin digestion, and solid phase extraction of the proteotypic peptides starting from only 100 μl of serum. For analysis, mass spectrometry was coupled to a conventional liquid chromatography system using a 2-mm-internal diameter reverse phase column. This mass spectrometry-based strategy was applied to the quantitation of prostate-specific antigen in sera of patients with either benign prostate hyperplasia or prostate cancer. The quantitation was performed against an external calibration curve by interpolation, and results showed good correlation with existing ELISA tests applied to the same samples. This strategy might now be implemented in any clinical laboratory or certified company for further evaluation of any putative biomarker in the low ng/ml range of serum or plasma.Used for years across a wide range of pathologies, proteomics studies based on semiquantitative mass spectrometry of proteins have already led to the discovery of numerous protein biomarker candidates. Often tens of putative biomarkers have been described for a single disease, but the subsequent phase of clinical evaluation on large cohorts for each candidate is clearly the bottleneck as revealed by the meager number of newly approved biomarkers for clinical use. One of the critical limitations of discovery work flows arises when no antibody is available to initiate an immunoassay because 1–3 years are required to conceive de novo a reliable immunoassay. Such a delay is a serious drawback when tens of putative markers are concerned. Quantitation of small organic molecules by mass spectrometry has been used extensively for years in the field of environmental contaminant analysis or pharmacokinetic profiling of drug candidates during clinical studies. More recently, absolute quantitation of proteins using mass spectrometry by single (SRM)1 or multiple reaction monitoring (MRM) and stable isotope dilution has thus naturally emerged as an alternative to immunoassays. Basically the absolute quantitation of a protein is provided by the integration of the specific MRM signals corresponding, respectively, to a proteotypic peptide (1) obtained from enzymatic hydrolysis of the target protein (usually by trypsin) and to its synthetic stable isotope-labeled isotopomer (2). The validation criteria of an MS-based method in terms of accuracy and precision are relatively easy to fulfill when addressing small molecules or proteins below 10 kDa in plasma or serum. Indeed they may be easily extracted from the bulk of high molecular mass proteins simply by selective precipitation. The quantitation of higher molecular mass proteins has proven to be more challenging because of the complexity and large dynamic range of proteins in e.g. plasma. In a pioneering study Anderson and Hunter (3) successfully demonstrated generation of a multiplexed assay for proteins covering high (tens to hundreds of micrograms/milliliter) to medium (hundreds of nanograms/milliliter to a few micrograms/milliliter) abundance ranges in plasma when combined with immunodepletion. However, these ranges remain problematic because clinically relevant biomarkers are usually present in plasma or serum in the low nanogram/milliliter range or below. To significantly improve the limit of quantitation (LOQ) of LC-MRM mass spectrometry, Keshishian et al. (4) evaluated a combination of immunodepletion of the most abundant plasma or serum proteins with strong cation exchange (SCX) chromatography for sample preparation prior to LC-MRM analysis. LOQs in the 1–10 ng/ml range were obtained with a coefficient of variation from 3 to 15% for five exogenous non-human proteins and the human prostate-specific antigen (PSA) protein spiked together into immunodepleted plasma from a healthy female donor. Very recently, a new approach using product ion scanning on a linear ion trap was proposed by Diamandis and co-workers (5) that allowed reaching a limit of quantitation of 1 ng/ml for PSA spiked into control plasma. This study marked a gain in sensitivity compared with previous attempts by others on similar instrumentation (69) but applied immunopurification of the target protein.Interestingly all the strategies published to date have been dealing with analytical development of work flows for the validation of biomarker candidates using microbore, nanoflow chromatography. Nanoflow is without any doubt appealing over conventional microflow during the proteomics discovery phase when the amount of biological material, for instance from a tumor biopsy, is often limited. Nonetheless this technique inherently still suffers from a lack of robustness and requires skilled personnel to be operational on a daily basis. As a consequence, nanoflow chromatography is not easily adaptable for the high throughput analysis environment encountered in clinical laboratories or good laboratory practice-certified or contract research organization companies where hundreds of samples are handled per day. In such organizations only microflow separations using 1- or 2-mm-internal diameter HPLC columns are compatible with the requirements of robustness and sample throughput.Therefore, the present work was centered on how a simple work flow could, in the near future, enable the large scale verification phase of putative biomarkers in the ng/ml of plasma range by the use of conventional LC equipment, i.e. using a 2-mm-internal diameter HPLC column. To address this question, we have considered that the absolute quantitation of PSA in true clinical samples could represent a challenging model. Combining immunodepletion of serum albumin and peptide fractionation simply by solid phase extraction (SPE), we were able to demonstrate for the first time the absolute quantitation of PSA by LC-MRM mass spectrometry in clinical serum samples of patients with benign prostate hyperplasia (BPH) or prostate cancer (PCa) within concentrations ranging from 4 to 30 ng/ml. Furthermore a good correlation was observed between the clinical ELISA tests and the mass spectrometry-based assays. We believe that these results are an unprecedented demonstration that the clinical relevance of putative biomarkers issued from proteomics investigation may now be confidently evaluated in the ng/ml range by robust coupling between conventional bore LC and mass spectrometry.  相似文献   
115.
Many problems concerned with the production and the purification of recombinant proteins must be addressed prior to launching an industrial production process. Among these problems, attention is focused on low-level expression that complicates the purification step and can jeopardise the process. The expression of a membrane protein, rP30, of Toxoplasma gondii in the yeast Schizosaccharomyces pombe led to a secretion of only 0.5 microg ml(-1). In order to obtain a sufficient quantity for biochemical characterization and evaluation in vitro diagnostic test development, strategies for both production and purification had to be optimized. First, the influence of four nitrogen sources (three peptones and yeast extract) on the growth rate, but also on the separation between the protein and the components of the fermentation broth was assessed. Second, batch and fed-batch fermentations were compared in terms of final biomass and rP30 concentrations. Third, three different protocols that included fixed and expanded bed ion exchange chromatography were compared for processing a large volume of feedstock. By using the most appropriate strategies, i.e. fed-batch fermentation, capture on EBA cation exchanger and affinity chromatography polishing, a purification factor of 1778 and a yield of 49% were achieved. These performances allowed a 12.5-fold increase for the overall rP30 process productivity.  相似文献   
116.
Brown algae share several important features with land plants, such as their photoautotrophic nature and their cellulose-containing wall, but the two groups are distantly related from an evolutionary point of view. The heterokont phylum, to which the brown algae belong, is a eukaryotic crown group that is phylogenetically distinct not only from the green lineage, but also from the red algae and the opisthokont phylum (fungi and animals). As a result of this independent evolutionary history, the brown algae exhibit many novel features and, moreover, have evolved complex multicellular development independently of the other major groups already mentioned. In 2004, a consortium of laboratories, including the Station Biologique in Roscoff and Genoscope, initiated a project to sequence the genome of Ectocarpus siliculosus, a small filamentous brown alga that is found in temperate, coastal environments throughout the globe. The E. siliculosus genome, which is currently being annotated, is expected to be the first completely characterized genome of a multicellular alga. In this review we look back over two centuries of work on this brown alga and highlight the advances that have led to the choice of E. siliculosus as a genomic and genetic model organism for the brown algae.  相似文献   
117.

Background  

Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation.  相似文献   
118.
In colonial birds, acoustic communication is essential for mate recognition. The South Polar skua (Catharacta maccormicki) lives in loose colonies and is highly territorial for feeding and breeding. We studied the potential of individual identity coding in the three main calls of the South Polar skua repertoire: the courtship, the contact and the alarm calls. We investigated parameters in both temporal and frequencial domains, i.e. amplitude modulation, frequency modulation and power spectrum density. For each parameter, the intra- and inter-individual variabilities were calculated. The ratio between these values represents the potential of individuality coding (PIC) of the considered feature. Low values of PICs for amplitude and frequency modulations show that both parameters may not be used for individual recognition. In contrast, high values of PIC for the power spectrum density indicate that the energy distribution among the frequency spectrum is likely to be an individual marker. PIC also varies according to the call type. Both courtship and contact calls have a higher potentiality of individual identity coding than the alarm call. The two former calls may allow individual recognition whereas the latter may not, and this last result can be extrapolated to many other species.  相似文献   
119.
The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process‐based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future.  相似文献   
120.
Nucleotide sequences from a 434-bp region of the 16S rRNA gene were analyzed for 65 taxa of Hymenoptera (ants, bees, wasps, parasitoid wasps, sawflies) to examine the patterns of variation within the gene fragment and the taxonomic levels for which it shows maximum utility in phylogeny estimation. A hierarchical approach was adopted in the study through comparison of levels of sequence variation among taxa at different taxonomic levels. As previously reported for many holometabolous insects, the 16S data reported here for Hymenoptera are highly AT-rich and exhibit strong site-to-site variation in substitution rate. More precise estimates of the shape parameter (alpha) of the gamma distribution and the proportion of invariant sites were obtained in this study by employing a reference phylogeny and utilizing maximum-likelihood estimation. The effectiveness of this approach to recovering expected phylogenies of selected hymenopteran taxa has been tested against the use of maximum parsimony. This study finds that the 16S gene is most informative for phylogenetic analysis at two different levels: among closely related species or populations, and among tribes, subfamilies, and families. Maximization of the phylogenetic signal extracted from the 16S gene at higher taxonomic levels may require consideration of the base composition bias and the site-to-site rate variation in a maximum-likelihood framework.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号