全文获取类型
收费全文 | 345篇 |
免费 | 18篇 |
专业分类
363篇 |
出版年
2023年 | 1篇 |
2022年 | 4篇 |
2021年 | 11篇 |
2020年 | 6篇 |
2019年 | 8篇 |
2018年 | 4篇 |
2017年 | 6篇 |
2016年 | 11篇 |
2015年 | 16篇 |
2014年 | 21篇 |
2013年 | 27篇 |
2012年 | 28篇 |
2011年 | 37篇 |
2010年 | 19篇 |
2009年 | 11篇 |
2008年 | 20篇 |
2007年 | 17篇 |
2006年 | 25篇 |
2005年 | 17篇 |
2004年 | 18篇 |
2003年 | 25篇 |
2002年 | 6篇 |
2001年 | 1篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1994年 | 1篇 |
1992年 | 2篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1988年 | 2篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1977年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有363条查询结果,搜索用时 15 毫秒
111.
Evangelia Vretou Petros Eliades Evgenia Psarrou Raina Kouvatsou 《FEMS microbiology letters》1992,91(3):225-230
HeLa-cell-membrane fractions isolated by sonication as used previously to identify chlamydial adhesins were examined by a blotting technique for binding chlamydial elementary bodies (EB). One HeLa cell protein with apparent molecular mass of 32 kDa was found to bind native EB. A monoclonal antibody (mAb) raised against this chlamydial binding host-cell protein reacted with eucaryotic histones. Histone fractions were capable of binding EB in an ELISA assay and histone H1 was identified as the chlamydial-binding host cell protein in the Hela cell membrane fraction. Probing with specific mAbs against histone H3 and DNA confirmed that chromatin components were present in the host-cell membrane extract. These data suggest that the HeLa-cell-binding chlamydial proteins were previously identified by their reaction with chromatin and not with membrane components. 相似文献
112.
Pingwei Zhao Tom R. Lane Helen G. L. Gao Dow P. Hurst Evangelia Kotsikorou Long Le Eugen Brailoiu Patricia H. Reggio Mary E. Abood 《The Journal of biological chemistry》2014,289(6):3625-3638
GPR35 is a G protein-coupled receptor expressed in the immune, gastrointestinal, and nervous systems in gastric carcinomas and is implicated in heart failure and pain perception. We investigated residues in GPR35 responsible for ligand activation and the receptor structure in the active state. GPR35 contains numerous positively charged amino acids that face into the binding pocket that cluster in two distinct receptor regions, TMH3-4-5-6 and TMH1-2-7. Computer modeling implicated TMH3-4-5-6 for activation by the GPR35 agonists zaprinast and pamoic acid. Mutation results for the TMH1-2-7 region of GPR35 showed no change in ligand efficacies at the K1.32A, R2.65A, R7.33A, and K7.40A mutants. However, mutation of arginine residues in the TMH3-4-5-6 region (R4.60, R6.58, R3.36, R(164), and R(167) in the EC2 loop) had effects on signaling for one or both agonists tested. R4.60A resulted in a total ablation of agonist-induced activation in both the β-arrestin trafficking and ERK1/2 activation assays. R6.58A increased the potency of zaprinast 30-fold in the pERK assay. The R(167)A mutant decreased the potency of pamoic acid in the β-arrestin trafficking assay. The R(164)A and R(164)L mutants decreased potencies of both agonists. Similar trends for R6.58A and R(167)A were observed in calcium responses. Computer modeling showed that the R6.58A mutant has additional interactions with zaprinast. R3.36A did not express on the cell surface but was trapped in the cytoplasm. The lack of surface expression of R3.36A was rescued by a GPR35 antagonist, CID2745687. These results clearly show that R4.60, R(164), R(167), and R6.58 play crucial roles in the agonist initiated activation of GPR35. 相似文献
113.
114.
Tsoukala E Agelis G Dolinsek J Botić T Cencic A Komiotis D 《Bioorganic & medicinal chemistry》2007,15(9):3241-3247
1,2:5,6-Di-O-isopropylidene-alpha-D-glucofuranose by the sequence of mild oxidation, reduction, fluorination, periodate oxidation, borohydride reduction, and sulfonylation gave 3-deoxy-3-fluoro-1,2-O-isopropylidene-5-O-p-toluenesulfonyl-alpha-D-xylofuranose (5). Tosylate 5 was converted to thioacetate derivative 6, which after acetolysis gave 1,2-di-O-acetyl-5-S-acetyl-3-deoxy-3-fluoro-5-thio-D-xylofuranose (7). Condensation of 7 with silylated thymine, uracil, and 5-fluorouracil afforded nucleosides 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) thymine (8), 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) uracil (9), and 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) 5-fluorouracil (10). Compounds 8, 9, and 10 are biologically active against rotavirus infection and the growth of tumor cells. 相似文献
115.
Distinction between breast cancer cell subtypes using third harmonic generation microscopy 下载免费PDF全文
Evangelia Gavgiotaki George Filippidis Haris Markomanolaki George Kenanakis Sofia Agelaki Vassilis Georgoulias Irene Athanassakis 《Journal of biophotonics》2017,10(9):1152-1162
Third Harmonic Generation (THG) microscopy as a non‐invasive, label free imaging methodology, allows linkage of lipid profiles with various breast cancer cells. The collected THG signal arise mostly from the lipid droplets and the membrane lipid bilayer. Quantification of THG signal can accurately distinguish HER2‐positive cells. Further analysis using Fourier transform infrared (FTIR) spectra reveals cancer‐specific profiles, correlating lipid raft‐corresponding spectra to THG signal, associating thus THG to chemical information.
116.
Cdc37 is a 50 kDa molecular chaperone which targets intrinsically unstable protein kinases to the molecular chaperone HSP90. It is also an over-expressed oncoprotein that mediates carcinogenesis and maintenance of the malignant phenotype by stabilizing the compromised structures of mutant and/or over-expressed oncogenic kinases. Here we report that Cdc37 is not restricted intracellularly but instead it is also present on the surface of MDA-MB-453 and MDA-MB-231 human breast cancer cells, where it is shown to participate in cancer cell motility processes. Furthermore, we demonstrate using an anti-Cdc37 cell impermeable antibody, that similarly to its intracellular counterpart, this surface pool of Cdc37 specifically interacts with HSP90 as well as the kinase receptors HER2 and EGFR on the cell surface, probably acting as a co-factor in HSP90's extracellular chaperoning activities. Finally, we show that functional inhibition of surface HSP90 using mAb 4C5, a cell impermeable monoclonal antibody against this protein, leads not only to disruption of the Cdc37/HSP90 complex but also to inhibition of the Cdc37/ErbB receptors complexes. These results support an essential role for surface Cdc37 in concert with HSP90 on the cell surface during cancer cell invasion processes and strengthen the therapeutic potential of mAb 4C5 for the treatment of cancer. 相似文献
117.
Alexacou KM Tenchiu Deleanu AC Chrysina ED Charavgi MD Kostas ID Zographos SE Oikonomakos NG Leonidas DD 《Bioorganic & medicinal chemistry》2010,18(22):7911-7922
Glycogen phosphorylase (GP) is a promising target for the treatment of type 2 diabetes. In the process of structure based drug design for GP, a group of 15 aromatic aldehyde 4-(β-d-glucopyranosyl)thiosemicarbazones have been synthesized and evaluated as inhibitors of rabbit muscle glycogen phosphorylase b (GPb) by kinetic studies. These compounds are competitive inhibitors of GPb with respect to α-d-glucose-1-phosphate with IC50 values ranging from 5.7 to 524.3 μM. In order to elucidate the structural basis of their inhibition, the crystal structures of these compounds in complex with GPb at 1.95–2.23 Å resolution were determined. The complex structures reveal that the inhibitors are accommodated at the catalytic site with the glucopyranosyl moiety at approximately the same position as α-d-glucose and stabilize the T conformation of the 280s loop. The thiosemicarbazone part of the studied glucosyl thiosemicarbazones possess a moiety derived from substituted benzaldehydes with NO2, F, Cl, Br, OH, OMe, CF3, or Me at the ortho-, meta- or para-position of the aromatic ring as well as a moiety derived from 4-pyridinecarboxaldehyde. These fit tightly into the β-pocket, a side channel from the catalytic site with no access to the bulk solvent. The differences in their inhibitory potency can be interpreted in terms of variations in the interactions of the aldehyde-derived moiety with protein residues in the β-pocket. In addition, 14 out of the 15 studied inhibitors were found bound at the new allosteric site of the enzyme. 相似文献
118.
The binding of beta- and gamma-cyclodextrins to glycogen phosphorylase b: kinetic and crystallographic studies 下载免费PDF全文
Pinotsis N Leonidas DD Chrysina ED Oikonomakos NG Mavridis IM 《Protein science : a publication of the Protein Society》2003,12(9):1914-1924
A number of regulatory binding sites of glycogen phosphorylase (GP), such as the catalytic, the inhibitor, and the new allosteric sites are currently under investigation as targets for inhibition of hepatic glycogenolysis under high glucose concentrations; in some cases specific inhibitors are under evaluation in human clinical trials for therapeutic intervention in type 2 diabetes. In an attempt to investigate whether the storage site can be exploited as target for modulating hepatic glucose production, alpha-, beta-, and gamma-cyclodextrins were identified as moderate mixed-type competitive inhibitors of GPb (with respect to glycogen) with K(i) values of 47.1, 14.1, and 7.4 mM, respectively. To elucidate the structural basis of inhibition, we determined the structure of GPb complexed with beta- and gamma-cyclodextrins at 1.94 A and 2.3 A resolution, respectively. The structures of the two complexes reveal that the inhibitors can be accommodated in the glycogen storage site of T-state GPb with very little change of the tertiary structure and provide a basis for understanding their potency and subsite specificity. Structural comparisons of the two complexes with GPb in complex with either maltopentaose (G5) or maltoheptaose (G7) show that beta- and gamma-cyclodextrins bind in a mode analogous to the G5 and G7 binding with only some differences imposed by their cyclic conformations. It appears that the binding energy for stabilization of enzyme complexes derives from hydrogen bonding and van der Waals contacts to protein residues. The binding of alpha-cyclodextrin and octakis (2,3,6-tri-O-methyl)-gamma-cyclodextrin was also investigated, but none of them was bound in the crystal; moreover, the latter did not inhibit the phosphorylase reaction. 相似文献
119.
Mohler PJ Healy JA Xue H Puca AA Kline CF Allingham RR Kranias EG Rockman HA Bennett V 《PloS one》2007,2(10):e1051
Here we report the unexpected finding that specific human ANK2 variants represent a new example of balanced human variants. The prevalence of certain ANK2 (encodes ankyrin-B) variants range from 2 percent of European individuals to 8 percent in individuals from West Africa. Ankyrin-B variants associated with severe human arrhythmia phenotypes (eg E1425G, V1516D, R1788W) were rare in the general population. Variants associated with less severe clinical and in vitro phenotypes were unexpectedly common. Studies with the ankyrin-B(+/-) mouse reveal both benefits of enhanced cardiac contractility, as well as costs in earlier senescence and reduced lifespan. Together these findings suggest a constellation of traits that we term "ankyrin-B syndrome", which may contribute to both aging-related disorders and enhanced cardiac function. 相似文献
120.
Amifostine is a broad-spectrum cytoprotective agent, selective for normal tissues. It is a pro-drug metabolised to the free thiol WR-1065 that may act as a scavenger of free radicals, generated in tissues exposed to chemotherapeutic agents or radiation. WR-1065 can be further oxidized to its symmetric disulfide WR-33278 or degraded to hydrogen peroxide (H2O2). Both WR-1065 and WR-33278 resemble endogenous polyamines. Although amifostine is used in some cases in the clinic, there are only few studies concerning its actions at the cellular level. We have previously shown that amifostine inhibits angiogenesis in vivo, affecting the expression of several angiogenic genes. In the present work, we studied the effect of amifostine on human umbilical vein endothelial cell (HUVEC) functions in vitro, in order to further clarify its mechanism(s) of action. Amifostine increased HUVEC proliferation, an effect that was reversed by the intracellular H2O2 scavenger sodium pyruvate, agents that increase intracellular cAMP levels and L-valine. On the other hand, amifostine decreased HUVEC migration, an effect that was reversed by L-valine or L-arginine but not sodium pyrouvate. The decrease in migration was in line with decreased tube formation on matrigel and decreased amounts of metalloproteinase-2 released into the culture medium of HUVEC. Finally, amifostine reduced tyrosine nitration of the cytoskeletal proteins actin and α-tubulin in a time dependent manner. This last action could be due to the reduced production of nitric oxide (NO) or to other not yet identified mechanisms. Collectively, our results suggest that amifostine acts on endothelial cells through pathways that affect the redox status of the cells, either by producing H2O2 or by modulating NO production. 相似文献