首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3207篇
  免费   233篇
  国内免费   1篇
  2023年   21篇
  2022年   48篇
  2021年   124篇
  2020年   61篇
  2019年   92篇
  2018年   73篇
  2017年   69篇
  2016年   125篇
  2015年   194篇
  2014年   199篇
  2013年   219篇
  2012年   285篇
  2011年   235篇
  2010年   146篇
  2009年   122篇
  2008年   144篇
  2007年   139篇
  2006年   144篇
  2005年   136篇
  2004年   121篇
  2003年   121篇
  2002年   107篇
  2001年   13篇
  2000年   18篇
  1999年   18篇
  1998年   21篇
  1997年   17篇
  1996年   21篇
  1995年   15篇
  1994年   13篇
  1993年   14篇
  1992年   12篇
  1991年   8篇
  1990年   21篇
  1989年   14篇
  1988年   9篇
  1987年   11篇
  1986年   7篇
  1985年   21篇
  1984年   23篇
  1983年   14篇
  1982年   14篇
  1981年   15篇
  1980年   14篇
  1973年   11篇
  1972年   8篇
  1968年   7篇
  1967年   8篇
  1963年   10篇
  1959年   6篇
排序方式: 共有3441条查询结果,搜索用时 31 毫秒
111.
Agroecosystem plant diversification can enhance pest biological regulation and is a promising alternative to pesticide application. However, the costs of competition for resources between plants may exceed the benefits gained by pest regulation. To disentangle the interactions between pest regulation and competition, we developed a generic process‐based approach that accounts for the effects of an associated plant and leaf and root pests on biomass production. We considered three crop–plant associations that differ in competition profiles, and we simulated biomass production under wide ranges of both pest regulation rates and resources’ availability. We analyzed outputs to quantify the pest regulation service level that would be required to attain monoculture yield and other production goals. Results showed that pest regulation requirements were highly dependent on the profile of resource interception of the associated plant and on resources’ availability. Pest regulation and the magnitude of competition between plants interacted in determining the balance between nitrogen and radiation uptake by the crop. Our findings suggest that productivity of diversified agroecosystems relative to monoculture should be optimized by assembling plants whose characteristics balance crops’ resource acquisition. The theoretical insights from our study draw generic rules for vegetation assemblage to optimize trade‐offs between pest regulation and production. Our findings and approach may have implications in understanding, theorizing and implementing agroecosystem diversification. By its generic and adaptable structure, our approach should be useful for studying the effects of diversification in many agroecosystems.  相似文献   
112.
Alzheimer´s disease is the most prominent type of dementia and currently no causative treatment is available. According to recent studies, oligomeric species of the amyloid beta (Aβ) peptide appear to be the most toxic Aβ assemblies. Aβ monomers, however, may be not toxic per se and may even have a neuroprotective role. Here we describe a competitive mirror image phage display procedure that allowed us to identify preferentially Aβ1–42 monomer binding and thereby stabilizing peptides, which destabilize and thereby eliminate toxic oligomer species. One of the peptides, called Mosd1 (monomer specific d-peptide 1), was characterized in more detail. Mosd1 abolished oligomers from a mixture of Aβ1–42 species, reduced Aβ1–42 toxicity in cell culture, and restored the physiological phenotype in neuronal cells stably transfected with the gene coding for human amyloid precursor protein.  相似文献   
113.

Background

In this large observational study population of 105 myotonic dystrophy type 1 (DM1) patients, we investigate whether bodyweight is a contributor of total lung capacity (TLC) independent of the impaired inspiratory muscle strength.

Methods

Body composition was assessed using the combination of body mass index (BMI) and fat-free mass index. Pulmonary function tests and respiratory muscle strength measurements were performed on the same day. Patients were stratified into normal (BMI < 25 kg/m2) and overweight (BMI ≥ 25 kg/m2) groups. Multiple linear regression was used to find significant contributors for TLC.

Results

Overweight was present in 59% of patients, and body composition was abnormal in almost all patients. In overweight patients, TLC was significantly (p = 2.40×10−3) decreased, compared with normal-weight patients, while inspiratory muscle strength was similar in both groups. The decrease in TLC in overweight patients was mainly due to a decrease in expiratory reserve volume (ERV) further illustrated by a highly significant (p = 1.33×10−10) correlation between BMI and ERV. Multiple linear regression showed that TLC can be predicted using only BMI and the forced inspiratory volume in 1 second, as these were the only significant contributors.

Conclusions

This study shows that, in DM1 patients, overweight further reduces lung volumes, as does impaired inspiratory muscle strength. Additionally, body composition is abnormal in almost all DM1 patients.  相似文献   
114.
Phospholipid fatty acids (PLFAs) are key components of microbial cell membranes. The analysis of PLFAs extracted from soils can provide information about the overall structure of terrestrial microbial communities. PLFA profiling has been extensively used in a range of ecosystems as a biological index of overall soil quality, and as a quantitative indicator of soil response to land management and other environmental stressors.The standard method presented here outlines four key steps: 1. lipid extraction from soil samples with a single-phase chloroform mixture, 2. fractionation using solid phase extraction columns to isolate phospholipids from other extracted lipids, 3. methanolysis of phospholipids to produce fatty acid methyl esters (FAMEs), and 4. FAME analysis by capillary gas chromatography using a flame ionization detector (GC-FID). Two standards are used, including 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (PC(19:0/19:0)) to assess the overall recovery of the extraction method, and methyl decanoate (MeC10:0) as an internal standard (ISTD) for the GC analysis.  相似文献   
115.
116.
117.
High quality Altai Neanderthal and Denisovan genomes are revealing which regions of archaic hominin DNA have persisted in the modern human genome. A number of these regions are associated with response to infection and immunity, with a suggestion that derived Neanderthal alleles found in modern Europeans and East Asians may be associated with autoimmunity. As such Neanderthal genomes are an independent line of evidence of which infectious diseases Neanderthals were genetically adapted to. Sympathetically, human genome adaptive introgression is an independent line of evidence of which infectious diseases were important for AMH coming in to Eurasia and interacting with Neanderthals. The Neanderthals and Denisovans present interesting cases of hominin hunter‐gatherers adapted to a Eurasian rather than African infectious disease package. Independent sources of DNA‐based evidence allow a re‐evaluation of the first epidemiologic transition and how infectious disease affected Pleistocene hominins. By combining skeletal, archaeological and genetic evidence from modern humans and extinct Eurasian hominins, we question whether the first epidemiologic transition in Eurasia featured a new package of infectious diseases or a change in the impact of existing pathogens. Coupled with pathogen genomics, this approach supports the view that many infectious diseases are pre‐Neolithic, and the list continues to expand. The transfer of pathogens between hominin populations, including the expansion of pathogens from Africa, may also have played a role in the extinction of the Neanderthals and offers an important mechanism to understand hominin–hominin interactions well back beyond the current limits for aDNA extraction from fossils alone. Am J Phys Anthropol 160:379–388, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
118.
119.
Applied Microbiology and Biotechnology - The recent recognition of the environmental prevalence of perchlorate and its discovery on Mars, Earth’s moon, and in meteorites, in addition to its...  相似文献   
120.
Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号