首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3241篇
  免费   243篇
  国内免费   1篇
  2023年   22篇
  2022年   50篇
  2021年   128篇
  2020年   59篇
  2019年   92篇
  2018年   74篇
  2017年   67篇
  2016年   124篇
  2015年   193篇
  2014年   200篇
  2013年   221篇
  2012年   286篇
  2011年   242篇
  2010年   147篇
  2009年   124篇
  2008年   148篇
  2007年   142篇
  2006年   146篇
  2005年   136篇
  2004年   123篇
  2003年   124篇
  2002年   106篇
  2001年   13篇
  2000年   19篇
  1999年   18篇
  1998年   20篇
  1997年   16篇
  1996年   21篇
  1995年   15篇
  1994年   12篇
  1993年   13篇
  1992年   14篇
  1991年   12篇
  1990年   27篇
  1989年   15篇
  1988年   12篇
  1987年   13篇
  1986年   7篇
  1985年   21篇
  1984年   25篇
  1983年   14篇
  1982年   14篇
  1981年   15篇
  1980年   14篇
  1973年   11篇
  1972年   8篇
  1968年   7篇
  1967年   8篇
  1963年   9篇
  1959年   6篇
排序方式: 共有3485条查询结果,搜索用时 20 毫秒
951.
The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we performed chromatin immunoprecipitations analyzing the myogenin promoter. We found that H4 hyperacetylation preceded Brg1 binding in a MyoD-dependent manner but that MyoD binding occurred subsequent to H4 modification and Brg1 interaction. In the absence of functional SWI/SNF enzymes, muscle regulatory proteins did not bind to the myogenin promoter, thereby providing evidence for SWI/SNF-dependent activator binding. We observed that the homeodomain factor Pbx1, which cooperates with MyoD to stimulate myogenin expression, is constitutively bound to the myogenin promoter in a SWI/SNF-independent manner, suggesting a two-step mechanism in which MyoD initially interacts indirectly with the myogenin promoter and attracts chromatin-remodeling enzymes, which then facilitate direct binding by MyoD and other regulatory proteins.  相似文献   
952.
953.
954.
Lipid bilayers containing 5% nitrilotriacetic acid (NTA) lipids supported on SiO2 have been used as a template for immobilization of oligohistidine-tagged single-chained antibody fragments (scFvs) directed against cholera toxin. It was demonstrated that histidine-tagged scFvs could be equally efficiently coupled to an NTA-Ni2+-containing lipid bilayer from a purified sample as from an expression supernatant, thereby providing a coupling method that eliminates time-consuming protein prepurification steps. Irrespective of whether the coupling was made from the unpurified or purified antibody preparation, the template proved to be efficient for antigen (cholera toxin) detection, verified using quartz crystal microbalance with dissipation monitoring. In addition, via a secondary amplification step using lipid vesicles containing GM1 (the natural membrane receptor for cholera toxin), the detection limit of cholera toxin was less than 750 pM. To further strengthen the coupling of scFvs to the lipid bilayer, scFvs containing two histidine tags, instead of just one tag, were also evaluated. The increased coupling strength provided via the bivalent anchoring significantly reduced scFv displacement in complex solutions containing large amounts of histidine-containing proteins, verified via cholera toxin detection in serum.  相似文献   
955.
956.
Granzyme B (GrB) is a member of a family of serine proteases involved in cytotoxic T-lymphocyte-mediated killing of potentially harmful cells, where GrB induces apoptosis by cleavage of a limited number of substrates. To investigate the suitability of GrB as an enzyme for specific fusion protein cleavage, two derivatives of human GrB, one dependent on blood coagulation factor Xa (FXa) cleavage for activation and one engineered to be self-activating, were recombinantly expressed in Escherichia coli. Both derivatives contain a hexa-histidine affinity tag fused to the C-terminus and expressed as inclusion bodies. These were isolated and solubilized in guanidiniumHCl, immobilized on a Ni2+-NTA agarose column, and refolded by application of a cyclic refolding protocol. The refolded pro-rGrB-H6 could be converted to a fully active form by cleavage with FXa or, for pro(IEPD)-rGrB-H6, by autocatalytic processing during the final purification step. A self-activating derivative in which the unpaired cysteine of human GrB was substituted with phenylalanine was also prepared. Both rGrB-H6 and the C228F mutant were found to be highly specific and efficient processing enzymes for the cleavage of fusion proteins, as demonstrated by cleavage of fusion proteins containing the IEPD recognition sequence of GrB.  相似文献   
957.
958.
Cysteinyl leukotrienes activate the cysteinyl leukotriene type 1 receptor (CysLT1R) to regulate numerous cell functions important in inflammatory processes and diseases such as asthma. Despite its physiologic importance, no studies to date have examined the regulation of CysLT1R signaling or trafficking. We have established model systems for analyzing recombinant human CysLT1R and found regulation of internalization and signaling of the CysLT1R to be unique among G protein-coupled receptors. Rapid and profound LTD4-stimulated internalization was observed for the wild type (WT) CysLT1R, whereas a C-terminal truncation mutant exhibited impaired internalization yet signaled robustly, suggesting a region within amino acids 310-321 as critical to internalization. Although overexpression of WT arrestins significantly increased WT CysLT1R internalization, expression of dominant-negative arrestins had minimal effects, and WT CysLT1R internalized in murine embryonic fibroblasts lacking both arrestin-2 and arrestin-3, suggesting that arrestins are not the primary physiologic regulators of CysLT1Rs. Instead, pharmacologic inhibition of protein kinase C (PKC) was shown to profoundly inhibit CysLT1R internalization while greatly increasing both phosphoinositide (PI) production and calcium mobilization stimulated by LTD4 yet had almost no effect on H1 histamine receptor internalization or signaling. Moreover, mutation of putative PKC phosphorylation sites within the CysLT1R C-tail (CysLT1RS(313-316)A) reduced receptor internalization, increased PI production and calcium mobilization by LTD4, and significantly attenuated the effects of PKC inhibition. These findings characterized the CysLT1R as the first G protein-coupled receptor identified to date in which PKC is the principal regulator of both rapid agonist-dependent internalization and rapid agonist-dependent desensitization.  相似文献   
959.
In a chemosystematic investigation of Digitalideae (Plantaginaceae), the water-soluble part of extracts of two species of Digitalis, two species of Isoplexis, as well as Erinus alpinus and Lafuentea rotundifolia were studied with regard to their content of main carbohydrates, iridoids and caffeoyl phenylethanoid glycosides (CPGs). Digitalis and Isoplexis contained sorbitol, cornoside and a number of other phenylethanoid glycosides including the new tyrosol beta-D-mannopyranoside, sceptroside but were found to lack iridoid glucosides. Erinus contained mainly glucose, the new 8,9-double bond iridoid, erinoside, and a number of known iridoid glucosides including two esters of 6-rhamnopyranosylcatalpol, as well as the CPG poliumoside. Finally, Lafuentea was characterized by the presence of glucose, aucubin and cryptamygin B but apparently lacked CPGs. The chemosystematic significance of the isolated compounds is discussed.  相似文献   
960.
Transgenic cassava (Manihot esculenta Crantz, cv MCol22) plants with a 92% reduction in cyanogenic glucoside content in tubers and acyanogenic (<1% of wild type) leaves were obtained by RNA interference to block expression of CYP79D1 and CYP79D2, the two paralogous genes encoding the first committed enzymes in linamarin and lotaustralin synthesis. About 180 independent lines with acyanogenic (<1% of wild type) leaves were obtained. Only a few of these were depleted with respect to cyanogenic glucoside content in tubers. In agreement with this observation, girdling experiments demonstrated that cyanogenic glucosides are synthesized in the shoot apex and transported to the root, resulting in a negative concentration gradient basipetal in the plant with the concentration of cyanogenic glucosides being highest in the shoot apex and the petiole of the first unfolded leaf. Supply of nitrogen increased the cyanogenic glucoside concentration in the shoot apex. In situ polymerase chain reaction studies demonstrated that CYP79D1 and CYP79D2 were preferentially expressed in leaf mesophyll cells positioned adjacent to the epidermis. In young petioles, preferential expression was observed in the epidermis, in the two first cortex cell layers, and in the endodermis together with pericycle cells and specific parenchymatic cells around the laticifers. These data demonstrate that it is possible to drastically reduce the linamarin and lotaustralin content in cassava tubers by blockage of cyanogenic glucoside synthesis in leaves and petioles. The reduced flux to the roots of reduced nitrogen in the form of cyanogenic glucosides did not prevent tuber formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号