首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29073篇
  免费   2328篇
  国内免费   4篇
  2023年   192篇
  2022年   130篇
  2021年   286篇
  2020年   330篇
  2019年   310篇
  2018年   536篇
  2017年   475篇
  2016年   997篇
  2015年   1629篇
  2014年   1598篇
  2013年   2165篇
  2012年   2728篇
  2011年   2249篇
  2010年   1256篇
  2009年   1005篇
  2008年   1846篇
  2007年   1726篇
  2006年   1840篇
  2005年   1562篇
  2004年   1549篇
  2003年   1434篇
  2002年   1361篇
  2001年   636篇
  2000年   769篇
  1999年   398篇
  1998年   211篇
  1997年   116篇
  1996年   138篇
  1995年   156篇
  1994年   124篇
  1993年   117篇
  1992年   133篇
  1991年   113篇
  1990年   104篇
  1989年   94篇
  1988年   64篇
  1987年   51篇
  1986年   54篇
  1985年   77篇
  1984年   95篇
  1983年   56篇
  1982年   73篇
  1981年   46篇
  1980年   57篇
  1979年   48篇
  1978年   41篇
  1977年   41篇
  1976年   58篇
  1975年   43篇
  1974年   43篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
By translocating proteasomal degradation products into the endoplasmic reticulum for loading of major histocompatibility complex I molecules, the ABC transporter TAP plays a focal role in the adaptive immunity against infected or malignantly transformed cells. A key question regarding the transport mechanism is how the quality of the incoming peptide is detected and how this information is transmitted to the ATPase domains. To identify residues involved in this process, we evolved a Trojan horse strategy in which a small artificial protease is inserted into antigenic epitopes. After binding, the TAP backbone in contact is cleaved, allowing the peptide sensor site to be mapped by mass spectrometry. Within this sensor site, we identified residues that are essential for tight coupling of peptide binding and transport. This sensor and transmission interface is restructured during the ATP hydrolysis cycle, emphasizing its important function in the cross-talk between the transmembrane and the nucleotide-binding domains. This allocrite sensor may be similarly positioned in other members of the ABC exporter family.  相似文献   
992.
The bacterial degradation pathways for the nematocide 1,3-dichloropropene rely on hydrolytic dehalogenation reactions catalyzed by cis- and trans-3-chloroacrylic acid dehalogenases (cis-CaaD and CaaD, respectively). X-ray crystal structures of native cis-CaaD and cis-CaaD inactivated by (R)-oxirane-2-carboxylate were elucidated. They locate four known catalytic residues (Pro-1, Arg-70, Arg-73, and Glu-114) and two previously unknown, potential catalytic residues (His-28 and Tyr-103'). The Y103F and H28A mutants of these latter two residues displayed reductions in cis-CaaD activity confirming their importance in catalysis. The structure of the inactivated enzyme shows covalent modification of the Pro-1 nitrogen atom by (R)-2-hydroxypropanoate at the C3 position. The interactions in the complex implicate Arg-70 or a water molecule bound to Arg-70 as the proton donor for the epoxide ring-opening reaction and Arg-73 and His-28 as primary binding contacts for the carboxylate group. This proposed binding mode places the (R)-enantiomer, but not the (S)-enantiomer, in position to covalently modify Pro-1. The absence of His-28 (or an equivalent) in CaaD could account for the fact that CaaD is not inactivated by either enantiomer. The cis-CaaD structures support a mechanism in which Glu-114 and Tyr-103' activate a water molecule for addition to C3 of the substrate and His-28, Arg-70, and Arg-73 interact with the C1 carboxylate group to assist in substrate binding and polarization. Pro-1 provides a proton at C2. The involvement of His-28 and Tyr-103' distinguishes the cis-CaaD mechanism from the otherwise parallel CaaD mechanism. The two mechanisms probably evolved independently as the result of an early gene duplication of a common ancestor.  相似文献   
993.
994.
Mycobacteria produce two unusual polymethylated polysaccharides, the 6-O-methylglucosyl-containing lipopolysaccharides (MGLP) and the 3-O-methylmannose polysaccharides, which have been shown to regulate fatty acid biosynthesis in vitro. A cluster of genes dedicated to the synthesis of MGLP was identified in Mycobacterium tuberculosis and Mycobacterium smegmatis. Overexpression of the putative glycosyltransferase gene Rv3032 in M. smegmatis greatly stimulated MGLP production, whereas the targeted disruption of Rv3032 in M. tuberculosis and that of the putative methyltransferase gene MSMEG2349 in M. smegmatis resulted in a dramatic reduction in the amounts of MGLP synthesized and in the accumulation of precursors of these molecules. Disruption of Rv3032 also led to a significant decrease in the glycogen content of the tubercle bacillus, indicating that the product of this gene is likely to be involved in the elongation of more than one alpha-(1-->4)-glucan in this bacterium. Results thus suggest that Rv3032 encodes the alpha-(1-->4)-glucosyltransferase responsible for the elongation of MGLP, whereas MSMEG2349 encodes the O-methyltransferase required for the 6-O-methylation of these compounds.  相似文献   
995.
N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation   总被引:2,自引:0,他引:2  
Although GSK-3 activity can be regulated by phosphorylation and through interaction with GSK-3-binding proteins, here we describe N-terminal proteolysis as a novel way to regulate GSK-3. When brain extracts were exposed to calcium, GSK-3 was truncated, generating two fragments of approximately 40 and 30 kDa, a proteolytic process that was inhibited by specific calpain inhibitors. Interestingly, instead of inhibiting this enzyme, GSK-3 truncation augmented its kinase activity. When we digested recombinant GSK-3 alpha and GSK-3beta protein with calpain, each isoform was cleaved differently, yet the truncated GSK-3 isoforms were still active kinases. We also found that lithium, a GSK-3 inhibitor, inhibits full-length and cleaved GSK-3 isoforms with the same IC(50) value. Calpain removed the N-terminal ends of His-tagged GSK-3 isoenzymes, and exposing cultured cortical neurons with ionomycin, glutamate, or N-methyl-d-aspartate led to the truncation of GSK-3. This truncation was blocked by the calpain inhibitor calpeptin, at the same concentration at which it inhibits calpain-mediated cleavage of NMDAR-2B and of p35 (the regulatory subunit of CDK5). Together, our data demonstrate that calpain activation produces a truncation of GSK-3 that removes an N-terminal inhibitory domain. Furthermore, we show that GSK-3 alpha and GSK-3beta isoenzymes have a different susceptibility to this cleavage, suggesting a means to specifically regulate these isoenzymes. These data provide the first direct evidence that calpain promotes GSK-3 truncation in a way that has implications in signal transduction, and probably in pathological disorders such as Alzheimer disease.  相似文献   
996.
The stimulation of membrane receptors coupled to the phopholipase C pathway leads to activation of the Ca(2+) release-activated Ca(2+) (CRAC) channels. Recent evidence indicates that ORAI1 is an essential pore subunit of CRAC channels. STIM1 is additionally required for CRAC channel activation. The present study focuses on the genomic organization, tissue expression pattern, and functional properties of the murine ORAI2. Additionally, we report the cloning of the murine ORAI1, ORAI3, and STIM1. Two chromosomal loci were identified for the murine orai2 gene, one containing an intronless gene and a second locus that gives rise to the splice variants ORAI2 long (ORAI2L) and ORAI2 short (ORAI2S). Northern blots revealed a prominent expression of the ORAI2 variants in the brain, lung, spleen, and intestine, while ORAI1, ORAI3, and STIM1 appeared to be near ubiquitously expressed in mice tissues. Specific antibodies detected ORAI2 in RBL 2H3 but not in HEK 293 cells, whereas both cell lines appeared to express ORAI1 and STIM1 proteins. Co-expression experiments with STIM1 and either ORAI1 or ORAI2 variants showed that ORAI2L and ORAI2S enhanced substantially CRAC current densities in HEK 293 but were ineffective in RBL 2H3 cells, whereas ORAI1 strongly amplified CRAC currents in both cell lines. Thus, the capability of ORAI2 variants to form CRAC channels depends strongly on the cell background. Additionally, CRAC channels formed by ORAI2S were strongly sensitive to inactivation by internal Ca(2+). When co-expressed with STIM1 and ORAI1, ORAI2S apparently plays a negative dominant role in the formation of CRAC channels.  相似文献   
997.
beta-Oxidation is a cyclic pathway involved in the degradation of lipids. In yeast, it occurs in peroxisomes and the first step is catalyzed by an acyl-CoA oxidase (Aoxp). The yeast Yarrowia lipolytica possesses several genes (POX) coding for Aoxps. This study is based on the factorial analysis of results obtained with the many POX derivative strains that have been constructed previously. The effect of interactions between Aoxps on the acyl-CoA oxidase (Aox) activity was important even at the second order. We then investigated the effect of Aox activity on growth and lactone production. Aox activity was correlated with acidification of the medium by cells and with cellular growth but not with lactone production, although Aox activity on short chains was inversely correlated with lactone accumulation. Due to the poor correlation between Aox activity and lactone production, the modeling of this parameter gave no satisfactory results but growth depending on Aox activity was modeled.  相似文献   
998.
Objective: The main purpose of this study was to determine the relationship between physical activity (PA) levels and adiposity. The secondary purpose was to assess the effect of physical fitness and living area on adiposity. Research Methods and Procedures: A cross‐sectional study was carried out in a regional representative sample of 1068 children 7 to 12 years of age. Anthropometric and physical fitness values (including BMI, aerobic capacity, strength levels, velocity assessment, and flexibility) were measured in all children. Results: The prevalence of being overweight and obese in the entire sample was 31% and 6%, respectively. No difference between urban and rural children was found. The proportion of boys who were classified as overweight and obese was similar in physically active and sedentary (non‐physically active) groups. However, physically active girls tended to show lower obesity prevalence compared with their sedentary counterparts (p = 0.06). In girls, the sum of the 6 skinfolds thickness (SSF) measurements was lower in the physically active group when compared with the non‐physically active group (p < 0.05); however, this effect was not observed in boys. Multiple regression analysis revealed that the level of physical activity (PA) had a significant effect on BMI and SSF in boys but not in girls, while maximal oxygen uptake (Vo 2max) was significantly related to adiposity in both sexes. Discussion: Regular participation in at least 2 hours per week of sports activities on top of the compulsory education program is associated with better physical fitness and lower whole body adiposity. In the children included in our study, among all physical fitness variables, Vo 2max showed the strongest relationship with BMI and fat mass assessed by means of skinfold measurements.  相似文献   
999.
To identify malaria antigens for vaccine development, we selected alpha-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally "native" epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high alpha-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.  相似文献   
1000.
Edge effects are major drivers of change in many fragmented landscapes, but are often highly variable in space and time. Here we assess variability in edge effects altering Amazon forest dynamics, plant community composition, invading species, and carbon storage, in the world's largest and longest-running experimental study of habitat fragmentation. Despite detailed knowledge of local landscape conditions, spatial variability in edge effects was only partially foreseeable: relatively predictable effects were caused by the differing proximity of plots to forest edge and varying matrix vegetation, but windstorms generated much random variability. Temporal variability in edge phenomena was also only partially predictable: forest dynamics varied somewhat with fragment age, but also fluctuated markedly over time, evidently because of sporadic droughts and windstorms. Given the acute sensitivity of habitat fragments to local landscape and weather dynamics, we predict that fragments within the same landscape will tend to converge in species composition, whereas those in different landscapes will diverge in composition. This 'landscape-divergence hypothesis', if generally valid, will have key implications for biodiversity-conservation strategies and for understanding the dynamics of fragmented ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号