首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19887篇
  免费   1830篇
  国内免费   19篇
  2021年   265篇
  2020年   133篇
  2019年   206篇
  2018年   262篇
  2017年   206篇
  2016年   380篇
  2015年   672篇
  2014年   744篇
  2013年   925篇
  2012年   1205篇
  2011年   1270篇
  2010年   768篇
  2009年   669篇
  2008年   965篇
  2007年   1074篇
  2006年   991篇
  2005年   980篇
  2004年   971篇
  2003年   945篇
  2002年   920篇
  2001年   213篇
  2000年   146篇
  1999年   211篇
  1998年   265篇
  1997年   190篇
  1996年   172篇
  1995年   204篇
  1994年   182篇
  1993年   168篇
  1992年   170篇
  1991年   147篇
  1990年   138篇
  1989年   130篇
  1988年   139篇
  1987年   138篇
  1986年   138篇
  1985年   159篇
  1984年   180篇
  1983年   151篇
  1982年   216篇
  1981年   221篇
  1980年   221篇
  1979年   143篇
  1978年   149篇
  1977年   134篇
  1976年   162篇
  1975年   122篇
  1974年   135篇
  1973年   154篇
  1970年   92篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Although Myanmar exports millions of dollars of rattan cane each year, the last systematic treatment of rattans in this country was done over 100 years ago, and virtually nothing has been written about the collection and trade of this important forest resource. Here we report the results from a study of rattans in the Hukaung Valley Tiger Reserve in northern Myanmar. A total of 15 species of rattan were encountered; seven species are new records for Myanmar and two species are new to science. Inventory transects revealed that the density of commercial rattans in local forests averages 40.5 canes ≽4m long/hectare. Populations of all species appear to be actively regenerating. The current pattern of rattan exploitation, however, is largely uncontrolled and will eventually lead to resource depletion unless some form of management is implemented.  相似文献   
962.
963.
It is often assumed that the efficiency of selection for mutational robustness would be proportional to mutation rate and population size, thus being inefficient in small populations. However, Krakauer and Plotkin (2002) hypothesized that selection in small populations would favor robustness mechanisms, such as redundancy, that mask the effect of deleterious mutations. In large populations, by contrast, selection is more effective at removing deleterious mutants and fitness would be improved by eliminating mechanisms that mask the effect of deleterious mutations and thus impede their removal. Here, we test whether these predictions are supported in experiments with evolving populations of digital organisms. Digital organisms are self-replicating programs that inhabit a virtual world inside a computer. Like their organic counterparts, digital organisms mutate, compete, evolve, and adapt by natural selection to their environment. In this study, 160 populations evolved at different combinations of mutation rate and population size. After 10(4) generations, we measured the mutational robustness of the most abundant genotype in each population. Mutational robustness tended to increase with mutation rate and to decline with population size, although the dependence with population size was in part mediated by a negative relationship between fitness and robustness. These results are independent of whether genomes were constrained to their original length or allowed to change in size.  相似文献   
964.
To identify putatively swept regions of the Drosophila melanogaster genome, we performed a microsatellite screen spanning a 260-kb region of the X chromosome in populations from Zimbabwe, Ecuador, the United States, and China. Among the regions identified by this screen as showing a complex pattern of reduced heterozygosity and a skewed frequency spectrum was the gene diminutive (dm). To investigate the microsatellite findings, nucleotide sequence polymorphism data were generated in populations from both China and Zimbabwe spanning a 25-kb region and encompassing dm. Analysis of the sequence data reveals strongly reduced nucleotide variation across the entire gene region in both the non-African and the African populations, an extended haplotype pattern, and structured linkage disequilibrium, as well as a rejection of neutrality in favor of selection using a composite likelihood-ratio test. Additionally, unusual patterns of synonymous site evolution were observed at the second exon of this locus. On the basis of simulation studies as well as recently proposed methods for distinguishing between selection and nonequilibrium demography, we find that this "footprint" is best explained by a selective sweep in the ancestral population, the signal of which has been somewhat blurred via founder effects in the non-African samples.  相似文献   
965.
966.
967.
Little is known regarding the quaternary structure of cation-Cl- cotransporters (CCCs) except that the Na+-dependent CCCs can exist as homooligomeric units. Given that each of the CCCs exhibits unique functional properties and that several of these carriers coexist in various cell types, it would be of interest to determine whether the four K+-Cl- cotransporter (KCC) isoforms and their splice variants can also assemble into such units and, more importantly, whether they can form heterooligomers by interacting with each other or with the secretory Na+-K+-Cl- cotransporter (NKCC1). In the present work, we have addressed these questions by conducting two groups of analyses: 1) yeast two-hybrid and pull-down assays in which CCC-derived protein segments were used as both bait and prey and 2) coimmunoprecipitation and functional studies of intact CCCs coexpressed in Xenopus laevis oocytes. Through a combination of such analyses, we have found that KCC2 and KCC4 could adopt various oligomeric states (in the form of KCC2-KCC2, KCC4-KCC4, KCC2-KCC4, and even KCC4-NKCC1 complexes), that their carboxyl termini were probably involved in carrier assembly, and that the KCC4-NKCC1 oligomers, more specifically, could deploy unique functional features. Through additional coimmunoprecipitation studies, we have also found that KCC1 and KCC3 had the potential of assembling into various types of CCC-CCC oligomers as well, although the interactions uncovered were not characterized as extensively, and the protein segments involved were not identified in yeast two-hybrid assays. Taken together, these findings could change our views on how CCCs operate or are regulated in animal cells by suggesting, in particular, that cation-Cl- cotransport achieves higher levels of functional diversity than foreseen.  相似文献   
968.
Ethanol decreases protein synthesis in cells, although the underlying regulatory mechanisms of this process are not fully established. In the present study incubation of C2C12 myocytes with 100 mm EtOH decreased protein synthesis while markedly increasing the phosphorylation of eukaryotic elongation factor 2 (eEF2), a key component of the translation machinery. Both mTOR and MEK pathways were found to play a role in regulating the effect of EtOH on eEF2 phosphorylation. Rapamycin, an inhibitor of mammalian target of rapamycin, and the MEK inhibitor PD98059 blocked the EtOH-induced phosphorylation of eEF2, whereas the p38 MAPK inhibitor SB202190 had no effect. Unexpectedly, EtOH decreased the phosphorylation and activity of the eEF2 upstream regulator eEF2 kinase. Likewise, treatment of cells with the inhibitor rottlerin did not block the stimulatory effect of EtOH on eEF2, suggesting that eEF2 kinase (eEF2K) does not play a role in regulating eEF2. In contrast, increased eEF2 phosphorylation was correlated with an increase in AMP-activated protein kinase (AMPK) phosphorylation and activity. Compound C, an inhibitor of AMPK, suppressed the effects of EtOH on eEF2 phosphorylation but had no effect on eEF2K, indicating that AMPK regulates eEF2 independent of eEF2K. Finally, EtOH decreased protein phosphatase 2A activity when either eEF2 or AMPK was used as the substrate. Thus, this later action may partially account for the increased phosphorylation of eEF2 in response to EtOH and the observed sensitivity of AMPK to rapamycin and PD98059 treatments. Collectively, the induction of eEF2 phosphorylation by EtOH is controlled by an increase in AMPK and a decrease in protein phosphatase 2A activity.  相似文献   
969.
Proteases within secretory vesicles are required for conversion of neuropeptide precursors into active peptide neurotransmitters and hormones. This study demonstrates the novel cellular role of the cysteine protease cathepsin L for producing the (Met)enkephalin peptide neurotransmitter from proenkephalin (PE) in the regulated secretory pathway of neuroendocrine PC12 cells. These findings were achieved by coexpression of PE and cathepsin L cDNAs in PC12 cells with analyses of PE-derived peptide products. Expression of cathepsin L resulted in highly increased cellular levels of (Met)enkephalin, resulting from the conversion of PE to enkephalin-containing intermediates of 23, 18-19, 8-9, and 4.5 kDa that were similar to those present in vivo. Furthermore, expression of cathepsin L with PE resulted in increased amounts of nicotine-induced secretion of (Met)enkephalin. These results indicate increased levels of (Met)enkephalin within secretory vesicles of the regulated secretory pathway. Importantly, cathespin L expression was directed to secretory vesicles, demonstrated by colocalization of cathepsin L-DsRed fusion protein with enkephalin and chromogranin A neuropeptides that are present in secretory vesicles. In vivo studies also showed that cathepsin L in vivo was colocalized with enkephalin. The newly defined secretory vesicle function of cathepsin L for biosynthesis of active enkephalin opioid peptide contrasts with its function in lysosomes for protein degradation. These findings demonstrate cathepsin L as a distinct cysteine protease pathway for producing the enkephalin member of neuropeptides.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号