首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19941篇
  免费   1841篇
  国内免费   21篇
  21803篇
  2022年   135篇
  2021年   264篇
  2020年   133篇
  2019年   206篇
  2018年   262篇
  2017年   206篇
  2016年   380篇
  2015年   672篇
  2014年   744篇
  2013年   925篇
  2012年   1205篇
  2011年   1270篇
  2010年   768篇
  2009年   669篇
  2008年   965篇
  2007年   1074篇
  2006年   991篇
  2005年   980篇
  2004年   970篇
  2003年   945篇
  2002年   920篇
  2001年   213篇
  2000年   146篇
  1999年   211篇
  1998年   265篇
  1997年   190篇
  1996年   172篇
  1995年   204篇
  1994年   182篇
  1993年   168篇
  1992年   170篇
  1991年   147篇
  1990年   138篇
  1989年   130篇
  1988年   139篇
  1987年   138篇
  1986年   138篇
  1985年   159篇
  1984年   180篇
  1983年   151篇
  1982年   216篇
  1981年   224篇
  1980年   223篇
  1979年   143篇
  1978年   149篇
  1977年   134篇
  1976年   164篇
  1975年   123篇
  1974年   137篇
  1973年   154篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A detailed understanding of the mechanisms by which particular amino acid sequences can give rise to more than one folded structure, such as for proteins that undergo large conformational changes or misfolding, is a long-standing objective of protein chemistry. Here, we describe the crystal structures of a single coiled-coil peptide in distinct parallel and antiparallel tetrameric configurations and further describe the parallel or antiparallel crystal structures of several related peptide sequences; the antiparallel tetrameric assemblies represent the first crystal structures of GCN4-derived peptides exhibiting such a configuration. Intriguingly, substitution of a single solvent-exposed residue enabled the parallel coiled-coil tetramer GCN4-pLI to populate the antiparallel configuration, suggesting that the two configurations are close enough in energy for subtle sequence changes to have important structural consequences. We present a structural analysis of the small changes to the helix register and side-chain conformations that accommodate the two configurations and have supplemented these results using solution studies and a molecular dynamics energetic analysis using a replica exchange methodology. Considering the previous examples of structural nonspecificity in coiled-coil peptides, the findings reported here not only emphasize the predisposition of the coiled-coil motif to adopt multiple configurations but also call attention to the associated risk that observed crytstal structures may not represent the only (or even the major) species present in solution.  相似文献   
992.
The Stt4 phosphatidylinositol 4-kinase has been shown to generate a pool of phosphatidylinositol 4-phosphate (PI4P) at the plasma membrane, critical for actin cytoskeleton organization and cell viability. To further understand the essential role of Stt4-mediated PI4P production, we performed a genetic screen using the stt4(ts) mutation to identify candidate regulators and effectors of PI4P. From this analysis, we identified several genes that have been previously implicated in lipid metabolism. In particular, we observed synthetic lethality when both sphingolipid and PI4P synthesis were modestly diminished. Consistent with these data, we show that the previously characterized phosphoinositide effectors, Slm1 and Slm2, which regulate actin organization, are also necessary for normal sphingolipid metabolism, at least in part through regulation of the calcium/calmodulin-dependent phosphatase calcineurin, which binds directly to both proteins. Additionally, we identify Isc1, an inositol phosphosphingolipid phospholipase C, as an additional target of Slm1 and Slm2 negative regulation. Together, our data suggest that Slm1 and Slm2 define a molecular link between phosphoinositide and sphingolipid signaling and thereby regulate actin cytoskeleton organization.  相似文献   
993.
Mathematical models have become vital to the study of many biological processes in humans due to the complexity of the physiological mechanisms underlying these processes and systems. While our current mathematical representation of the human circadian pacemaker has proven useful in many experimental situations, it uses as input only a direct effect of light on the circadian pacemaker. Although light (a photic stimulus) has been shown to be the primary synchronizer of the circadian pacemaker across a number of species, studies in both animals and humans have confirmed the existence of non-photic effects that also contribute to phase shifting and entrainment. We modified our light-based circadian mathematical model to reflect evidence from these studies that the sleep-wake cycle and/or associated behaviors have a non-photic effect on the circadian pacemaker. In our representation, the sleep-wake cycle and its associated behaviors provides a non-photic drive on the circadian pacemaker that acts both independently and concomitantly with light stimuli. Further experiments are required to validate fully our model and to understand the exact effect of the sleep-wake cycle as a non-photic stimulus for the human circadian pacemaker.  相似文献   
994.
Long oligopeptides (>10 residues) are generated during the catabolism of cellular proteins in the cytosol. To be presented to T cells, such peptides must be trimmed by aminopeptidases to the proper size (typically 8-10 residues) to stably bind to MHC class I molecules. Aminopeptidases also destroy epitopes by trimming them to even shorter lengths. Bleomycin hydrolase (BH) is a cytosolic aminopeptidase that has been suggested to play a key role in generating MHC class I-presented peptides. We show that BH-deficient cells from mice are unimpaired in their ability to present epitopes from N-extended precursors or whole Ags and express normal levels of MHC class I molecules. Similarly, BH-deficient mice develop normal CD8(+) T cell responses to eight epitopes from three different viruses in vivo. Therefore, BH by itself is not essential for the generation or destruction of MHC class I peptides. In contrast, when BH(-/-) mice are crossed to mice lacking another cytosolic aminopeptidase, leucine aminopeptidase, the resulting BH(-/-)leucine aminopeptidase(-/-) progeny show a selective increase in CD8(+) T cell responses to the gp276 epitope from lymphocytic choriomeningitis virus, whereas the ability to present and respond to several other epitopes is unchanged. Therefore, BH does influence presentation of some Ags, although its role is largely redundant with other aminopeptidases.  相似文献   
995.
Apical junctional complex (AJC) plays a vital role in regulation of epithelial barrier function. Disassembly of the AJC is observed in diverse physiological and pathological states; however, mechanisms governing this process are not well understood. We previously reported that the AJC disassembly is driven by the formation of apical contractile acto-myosin rings. In the present study, we analyzed the signaling pathways regulating acto-myosin-dependent disruption of AJC by using a model of extracellular calcium depletion. Pharmacological inhibition analysis revealed a critical role of Rho-associated kinase (ROCK) in AJC disassembly in calcium-depleted epithelial cells. Furthermore, small interfering RNA (siRNA)-mediated knockdown of ROCK-II, but not ROCK-I, attenuated the disruption of the AJC. Interestingly, AJC disassembly was not dependent on myosin light chain kinase and myosin phosphatase. Calcium depletion resulted in activation of Rho GTPase and transient colocalization of Rho with internalized AJC proteins. Pharmacological inhibition of Rho prevented AJC disassembly. Additionally, Rho guanine nucleotide exchange factor (GEF)-H1 translocated to contractile F-actin rings after calcium depletion, and siRNA-mediated depletion of GEF-H1 inhibited AJC disassembly. Thus, our findings demonstrate a central role of the GEF-H1/Rho/ROCK-II signaling pathway in the disassembly of AJC in epithelial cells.  相似文献   
996.
The global war on terrorism has led to increased concern about the ability of the U.S. healthcare system to respond to casualties from a chemical, biological, or radiological agent attack. Relatively little attention, however, has focused on the potential, in the immediate aftermath of such an attack, for large numbers of casualties presenting to triage points with acute health anxiety and idiopathic physical symptoms. This sort of "mass idiopathic illness" is not a certain outcome of chemical, biological, or radiological attack. However, in the event that this phenomenon occurs, it could result in surges in demand for medical evaluations that may disrupt triage systems and endanger lives. Conversely, if continuous primary care is not available for such patients after initial triage, many may suffer with unrecognized physical and emotional injuries and illness. This report is the result of an expert planning initiative seeking to facilitate triage protocols that will address the possibility of mass idiopathic illness and bolster healthcare system surge capacity. The report reviews key triage assumptions and gaps in knowledge and offers a four-stage triage model for further discussion and research. Optimal triage approaches offer flexibility and should be based on empirical studies, critical incident modeling, lessons from simulation exercises, and case studies. In addition to staging, the proposed triage and longitudinal care model relies on early recognition of symptoms, development of a registry, and use of non-physician care management to facilitate later longitudinal followup and collaboration between primary care and psychiatry for the significant minority of patients who develop persistent idiopathic symptoms associated with reduced functional status.  相似文献   
997.
To identify putatively swept regions of the Drosophila melanogaster genome, we performed a microsatellite screen spanning a 260-kb region of the X chromosome in populations from Zimbabwe, Ecuador, the United States, and China. Among the regions identified by this screen as showing a complex pattern of reduced heterozygosity and a skewed frequency spectrum was the gene diminutive (dm). To investigate the microsatellite findings, nucleotide sequence polymorphism data were generated in populations from both China and Zimbabwe spanning a 25-kb region and encompassing dm. Analysis of the sequence data reveals strongly reduced nucleotide variation across the entire gene region in both the non-African and the African populations, an extended haplotype pattern, and structured linkage disequilibrium, as well as a rejection of neutrality in favor of selection using a composite likelihood-ratio test. Additionally, unusual patterns of synonymous site evolution were observed at the second exon of this locus. On the basis of simulation studies as well as recently proposed methods for distinguishing between selection and nonequilibrium demography, we find that this "footprint" is best explained by a selective sweep in the ancestral population, the signal of which has been somewhat blurred via founder effects in the non-African samples.  相似文献   
998.
Elevated plasma levels of the acute-phase reactant serum amyloid A (SAA) have been used as a marker and predictor of inflammatory diseases. SAA regulates leukocyte activation; however, it is not known whether it also modulates neutrophil apoptosis, which is critical to the optimal expression and resolution of inflammation. Culture of human neutrophils with SAA (0.1-20 microg/ml) markedly prolonged neutrophil longevity by delaying constitutive apoptosis. SAA evoked concurrent activation of the ERK and PI3K/Akt signaling pathways, leading to phosphorylation of BAD at Ser(112) and Ser(136), respectively, and to prevention of collapse of mitochondrial transmembrane potential, cytochrome c release, and caspase-3 activation. These actions were abrogated by pharmacological inhibition of the formyl peptide receptor, ERK or PI3K. Furthermore, aspirin-triggered 15-epi-lipoxin A(4) (15-epi-LXA(4)) and its stable analog 15-epi-16-p-fluorophenoxy-LXA(4), which binds to the same receptor as SAA, effectively overrode the antiapoptosis signal from SAA even when neutrophils were treated with 15-epi-LXA(4) at either 1 or 4 h postculture with SAA. 15-Epi-LXA(4) itself did not affect neutrophil survival and apoptosis. Our results indicate that SAA at clinically relevant concentrations promotes neutrophil survival by suppressing the apoptotic machinery, an effect that can be opposed by 15-epi-LXA(4). The opposing actions of SAA and aspirin-triggered 15-epi-LXA(4) may contribute to the local regulation of exacerbation and resolution of inflammation, respectively.  相似文献   
999.
The molecular mechanisms of endothelial differentiation into a functional vascular network are incompletely understood. To identify novel factors in endothelial development, we used a microarray screen with differentiating embryonic stem (ES) cells that identified the gene for ankyrin repeat and SOCS box protein 4 (ASB4) as the most highly differentially expressed gene in the vascular lineage during early differentiation. Like other SOCS box-containing proteins, ASB4 is the substrate recognition molecule of an elongin B/elongin C/cullin/Roc ubiquitin ligase complex that mediates the ubiquitination and degradation of substrate protein(s). High levels of ASB4 expression in the embryonic vasculature coincide with drastic increases in oxygen tension as placental blood flow is initiated. However, as vessels mature and oxygen levels stabilize, ASB4 expression is quickly downregulated, suggesting that ASB4 may function to modulate an endothelium-specific response to increasing oxygen tension. Consistent with the hypothesis that ASB4 function is regulated by oxygen concentration, ASB4 interacts with the factor inhibiting HIF1alpha (FIH) and is a substrate for FIH-mediated hydroxylation via an oxygen-dependent mechanism. Additionally, overexpression of ASB4 in ES cells promotes differentiation into the vascular lineage in an oxygen-dependent manner. We postulate that hydroxylation of ASB4 in normoxia promotes binding to and degradation of substrate protein(s) to modulate vascular differentiation.  相似文献   
1000.
Structural models for the KCNQ1 voltage-gated potassium channel   总被引:1,自引:0,他引:1  
Smith JA  Vanoye CG  George AL  Meiler J  Sanders CR 《Biochemistry》2007,46(49):14141-14152
Mutations in the human voltage-gated potassium channel KCNQ1 are associated with predisposition to deafness and various cardiac arrhythmia syndromes including congenital long QT syndrome, familial atrial fibrillation, and sudden infant death syndrome. In this work 3-D structural models were developed for both the open and closed states of human KCNQ1 to facilitate structurally based hypotheses regarding mutation-phenotype relationships. The KCNQ1 open state was modeled using Rosetta in conjunction with Molecular Operating Environment software, and is based primarily on the recently determined open state structure of rat Kv1.2 (Long, S. B., et al. (2005) Science 309, 897-903). The closed state model for KCNQ1 was developed based on the crystal structures of bacterial potassium channels and the closed state model for Kv1.2 of Yarov-Yarovoy et al. ((2006) Proc. Natl. Acad. Sci. U.S.A. 103, 7292-7207). Using the new models for KCNQ1, we generated a database for the location and predicted residue-residue interactions for more than 85 disease-linked sites in both open and closed states. These data can be used to generate structure-based hypotheses for disease phenotypes associated with each mutation. The potential utility of these models and the database is exemplified by the surprising observation that four of the five known mutations in KCNQ1 that are associated with gain-of-function KCNQ1 defects are predicted to share a common interface in the open state structure between the S1 segment of the voltage sensor in one subunit and both the S5 segment and top of the pore helix from another subunit. This interface evidently plays an important role in channel gating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号