首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21857篇
  免费   2194篇
  国内免费   19篇
  2022年   129篇
  2021年   278篇
  2020年   147篇
  2019年   224篇
  2018年   275篇
  2017年   225篇
  2016年   406篇
  2015年   733篇
  2014年   784篇
  2013年   990篇
  2012年   1305篇
  2011年   1343篇
  2010年   819篇
  2009年   737篇
  2008年   1057篇
  2007年   1146篇
  2006年   1038篇
  2005年   1055篇
  2004年   1024篇
  2003年   1000篇
  2002年   971篇
  2001年   293篇
  2000年   193篇
  1999年   251篇
  1998年   293篇
  1997年   216篇
  1996年   191篇
  1995年   223篇
  1994年   203篇
  1993年   187篇
  1992年   209篇
  1991年   188篇
  1990年   187篇
  1989年   177篇
  1988年   174篇
  1987年   168篇
  1986年   173篇
  1985年   197篇
  1984年   218篇
  1983年   177篇
  1982年   240篇
  1981年   256篇
  1980年   249篇
  1979年   179篇
  1978年   182篇
  1977年   161篇
  1976年   191篇
  1975年   158篇
  1974年   166篇
  1973年   199篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Summer dynamics of the deep chlorophyll maximum in Lake Tahoe   总被引:3,自引:0,他引:3  
Vertical profiles of chlorophyll and phytoplankton biomass weremeasured in Lake Tahoe from July 1976 through April 1977. Adeep chlorophyll maximum (DCM) persisted during summer and earlyautumn (July—October) near 100 m, well below the mixedlayer and at the upper surface of the nitracline. The DCM coincidedwith the phytoplankton biomass maximum as determined from cellcounts. In addition, the composition of the phytoplankton assemblagewas highly differentiated with respect to depth. Cyclotellastelligera was the predominant species in the mixed layer whilethe major species in the DCM layer included C. ocellata andseveral green ultraplanktonic species. In situ cell growth playsa substantial role in maintaining the DCM, but sinking of cellsfrom shallower depths and zooplankton grazing above the DCMmay contribute to the maintenance of the DCM. Calculations supportthe interpretation that the summer DCM persists at the boundarybetween an upper, nutrient-limited phytoplankton assemblageand a deeper, light-limited assemblage.  相似文献   
92.
Explants from immature inflorescences of four genotypes of Old World bluestem grasses, (Bothriochloa spp.), produced callus tissue on Linsmaier and Skoog (RM) and 1/2 Murashige and Skoog (1/2 MS) media containing high levels of growth regulators. Callus masses were composed of two distinct tissue types, one a compact, white, embryogenic portion (E calli), the other soft, translucent, gelatinous and nonembryogenic (NE calli). When transferred to medium with a reduced level of 2,4-D, and/or supplemented with zeatin, E callus underwent further organization culminating in shoot production. Light and scanning electron microscopy confirmed the embryogenic pathway of differentiation. Genotype significantly affected callus induction frequency and the number of plants regenerated. The RM medium induced more explants to initiate callus compared to the 1/2 MS medium. Age of the inflorescence explant, as indicated by size, was critical for callus induction. Inflorescences with racemes 8 mm in length were superior to older ones. Five-hundred-twenty-two plantlets were regenerated and grown to maturity.  相似文献   
93.
Big Moose L. has become significantly more acidic since the 1950s, based on paleolimnological analyses of sediment cores. Reconstruction of past lakewater pH using diatom assemblage data indicates that from prior to 1800 to ca. 1950, lakewater pH was about 5.8. After the mid-1950s, the inferred pH decreased steadily and relatively quickly to about 4.6. Alkalinity reconstructions indicate a decrease of about 30 eq · l-1 during the same period. There was a major shift in diatom assemblage composition, including a nearly total loss of euplanktonic taxa. Chrysophyte scale assemblages and chironomid (midge larvae remains also changed in a pattern indicating decreasing lakewater pH starting in the 1950s. Accumulation rates of total Ca, exchangeable and oxide Al, and other metals suggest recent lake-watershed acidification. Cores were dated using210Pb, pollen, and charcoal. Indicators of watershed change (deposition rates of Ti, Si, Al) do not suggest any major erosional events resulting from fires or logging. Accumulation rates of materials associated with combustion of fossil fuels (polycyclic aromatic hydrocarbons, coal and oil soot particles, some trace metals, and sulfur) are low until the late 1800s-early 1900s and increase relatively rapidly until the 1920s–1930s. Peak rates occurred between the late 1940s and about 1970, when rates declined.The recent decrease in pH of Big Moose L. cannot be accounted for by natural acidification or processes associated with watershed disturbance. The magnitude, rate and timing of the recent pH and alkalinity decreases, and their relationship to indicators of coal and oil combustion, indicate that the most reasonable explanation for the recent acidification is increased atmospheric deposition of strong acids derived from combustion of fossil fuels.  相似文献   
94.
Manganese cycling in an acidic Adirondack lake   总被引:4,自引:4,他引:0  
There is considerable interest in the chemistry of Mn in acidic waters because of its role in the generation of acid neutralizing capacity during reduction processes, as an adsorbent in element cycling, and as a potential toxicant to aquatic organisms. Temporal and spatial variations in the concentration of Mn were evident in acidic Dart's Lake (1.0–2.3 mol l–1), located in the Adirondack Region of New York. Seasonal changes in pH and dissolved oxygen concentration had subtle effects on the chemistry and transport of Mn. Despite oversaturation with respect to the solubility of manganite during periods of stratification, vertical deposition of Mn was minimal. The conservative nature of Mn appears to be due to the acidic conditions in Dart's Lake.  相似文献   
95.
An integrated analysis of a terrestrial-aquatic ecosystem, the North Branch of the Moose River in the Adirondack region of New York, was conducted. This basin contains a large number of interconnected surface waters that exhibit marked gradients in pH and acid neutralizing capacity (ANC). As a result, the basin has been the focus of research activity, including the Regional Integrated Lake-Watershed Acidification Study (RILWAS). The objective of the current analysis was to use the North Branch of the Moose River as a case study to:
  1. Evaluate processes regulating the acid-base chemistry of surface waters.
  2. To assess the effects of surface water acidification on fish populations.
The observations of this study were consistent with the model of surface water acidification developed during the Integrated Lake-Watershed Acidification Study (ILWAS). The processes depicted in the original ILWAS simulation model were adequate to describe the acid-base chemistry of surface waters in the North Branch of the Moose River. However, the reduction of SO 4 2? in lake sediments, a process not represented in the original model, proved to be a significant source of acid neutralizing capacity (ANC) for some of these waters. As a result, reduction processes were added to the model. Analysis of in-situ bioassay and survey data indicate that acid-sensitive fish species have disappeared from the more acidic areas of the basin over the last half century. Paleoecological analyses indicate that pH has decreased from the high 5's to about 5 in Big Moose Lake during this period. ILWAS model simulations indicate that the pH of Big Moose Lake would increase by at least 0.1 to 0.5 pH units (depending on the season) in response to a 50% reduction in total atmospheric S deposition. Considerable variability in processes regulating acid/base chemistry was evident in the North Branch of the Moose River. Therefore, regional assessments of past or possible future effects of acidic deposition require widespread application of ILWAS theory within the Adirondack region and other potentially acid-sensitive areas.  相似文献   
96.
97.
Summary 5-enolpyruvylshikimate-3-phosphate synthase (EPSPs), the target of the herbicide glyphosate, catalyzes an essential step in the shikimate pathway common to aromatic amino acid biosynthesis. We have cloned an EPSP synthase gene from Arabidopsis thaliana by hybridization with a petunia cDNA probe. The Arabidopsis gene is highly homologous to the petunia gene within the mature enzyme but is only 23% homologous in the chloroplast transit peptide portion. The Arabidopsis gene contains seven introns in exactly the same positions as those in the petunia gene. The introns are, however, significantly smaller in the Arabidopsis gene. This reduction accounts for the significantly smaller size of the gene as compared to the petunia gene. We have fused the gene to the cauliflower mosaic virus 35 S promoter and reintroduced the chimeric gene into Arabidopsis. The resultant overproduction of EPSPs leads to glyphosate tolerance in transformed callus and plants.  相似文献   
98.
The survival of murine intestinal clonogenic cells (ICC) and the survival of mice after whole-body exposure to 137Cs irradiation were used to measure radiation protection by ethiophos (WR-2721), 16,16-dimethyl prostaglandin E2, and the combination of the two. Doses from 2 to 12.5 mg/mouse of WR-2721 increased cell survival linearly from 3.2 +/- 0.3 in controls given 15.0 Gy to 93.1 +/- 5.2 per jejunal circumference. In contrast, 16,16-dm PGE2 increased ICC survival at 15.0 Gy rapidly from 1 to 10 micrograms/mouse, followed by a plateau up to 100 micrograms/mouse. Animal survival at 6 days (LD50/6) increased from 16.3 +/- 0.4 Gy (95% confidence limits) in controls to 20.3 +/- 0.6 Gy in the PG-treated animals. WR-2721 increased the LD50/6 to 26.1 +/- 1.4 Gy. The dose modification factors were 1.25 and 1.60, respectively. The combination of agents increased ICC survival above that seen with each agent alone up to 8 mg WR-2721, above which no additional protection was seen. Animals given 10 micrograms PG plus 10 mg WR-2721 survived longer than with either agent given alone. The LD50/6 was 36.3 +/- 1.8 Gy for a dose modification factor (DMF) of 2.23. In addition, the slope of the probit curve was reduced from those of each agent alone. PG-induced changes in villus epithelial cell morphology and survival may account, in part, for these observations. The results suggest that either the mechanisms for these two types of radiation protectors are different or they act on separate subcellular targets which are critical to survival from radiation injury.  相似文献   
99.
The radiosensitivity as measured by LD50/6 or LD50/30 of the F1 hybrid B6CF1 (C57BL/6 X BALB/c) is similar to that of C57BL/6 mice but markedly different from BALB/c. The LD50/6 for BALB/c mice was about 8.8 Gy compared to 16.4 Gy for the B6CF1. The difference in LD50/6 between the parent strains or between BALB/c and the F1 hybrid could not be explained by any differences in crypt cell number, cell cycle time, or transit time. Likewise, the observed differences in the LD50/6 do not appear to result from marked differences in the radiosensitivity of marrow stem cells (CFU-S) since the D0's for the three genotypes of mice were similar. Also, there were no apparent differences in the red blood cell contents of several enzymes associated with antioxidant defenses. The microcolony assay was used to determine the D0 for the crypt clonogenic cells and the D0 values for 60Co gamma rays were about 0.8 Gy for BALB/c mice and 1.4 Gy for B6CF1 mice. However, the D0 values for JANUS fission neutrons were similar; 0.6 Gy for the BALB/c mice and 0.5 for the B6CF1 mice. A comparison of clonogenic cell kinetics, using prolonged colcemid block to distinguish between slowly and rapidly cycling cells suggest that, normally, the stem cells are slowly cycling in both the BALB/c and the B6CF1 hybrid. However, the stem cells of the B6CF1 appear to go into rapid cell cycle more rapidly than those of the BALB/c following irradiation or prolonged colcemid treatment. The more rapid recovery in intestinal epihelial cell production in the B6CF1 hybrid after irradiation may provide an increased mucosal barrier and may, in part, explain the difference in the response to radiation compared to that in the BALB/c.  相似文献   
100.
The metabolism of succinate was examined in the housefly Musca domestica L. The labeled carbons from [2,3-14C]succinate were readily incorporated into cuticular hydrocarbon and internal lipid, whereas radioactivity from [1,4-14C]succinate was not incorporated into either fraction. Examination of the incorporation of [2,3-14C]succinate, [1-14C]acetate, and [U-14C]proline into hydrocarbon by radio-gas-liquid chromatography showed that each substrate gave a similar labeling pattern, which suggested that succinate and proline were converted to acetyl-CoA prior to incorporation into hydrocarbons. Carbon-13 nuclear magnetic resonance showed that the labeled carbons from [2,3-13C]succinate enriched carbons 1, 2, and 3 of hydrocarbons with carbon-carbon coupling showing that carbons 2 and 3 of succinate were incorporated as an intact unit. Radio-high-performance liquid chromatographic analysis of [2,3-14C]succinate metabolism by mitochondrial preparations showed that in addition to labeling fumarate, malate, and citrate, considerable radioactivity was also present in the acetate fraction. The data show that succinate was not converted to methylmalonate and did not label hydrocarbon via a methylmalonyl derivative. Malic enzyme was assayed in sonicated mitochondria prepared from the abdomens and thoraces of 1- and 4-day-old insects; higher activity was obtained with NAD+ in mitochondria prepared from thoraces, whereas NADP+ gave higher activity with abdomen preparations. These data document the metabolism of succinate to acetyl-CoA and not to a methylmalonyl unit prior to incorporation into lipid in the housefly and establish the role of the malic enzyme in this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号