首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20068篇
  免费   1850篇
  国内免费   19篇
  2022年   131篇
  2021年   264篇
  2020年   133篇
  2019年   206篇
  2018年   262篇
  2017年   207篇
  2016年   380篇
  2015年   673篇
  2014年   745篇
  2013年   927篇
  2012年   1208篇
  2011年   1273篇
  2010年   774篇
  2009年   671篇
  2008年   968篇
  2007年   1082篇
  2006年   996篇
  2005年   987篇
  2004年   975篇
  2003年   953篇
  2002年   931篇
  2001年   218篇
  2000年   151篇
  1999年   216篇
  1998年   270篇
  1997年   196篇
  1996年   179篇
  1995年   208篇
  1994年   183篇
  1993年   170篇
  1992年   175篇
  1991年   150篇
  1990年   138篇
  1989年   134篇
  1988年   143篇
  1987年   143篇
  1986年   142篇
  1985年   162篇
  1984年   182篇
  1983年   154篇
  1982年   217篇
  1981年   227篇
  1980年   227篇
  1979年   143篇
  1978年   149篇
  1977年   134篇
  1976年   164篇
  1975年   123篇
  1974年   137篇
  1973年   154篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
961.
Mycobacteria produce two unusual polymethylated polysaccharides, the 6-O-methylglucosyl-containing lipopolysaccharides (MGLP) and the 3-O-methylmannose polysaccharides, which have been shown to regulate fatty acid biosynthesis in vitro. A cluster of genes dedicated to the synthesis of MGLP was identified in Mycobacterium tuberculosis and Mycobacterium smegmatis. Overexpression of the putative glycosyltransferase gene Rv3032 in M. smegmatis greatly stimulated MGLP production, whereas the targeted disruption of Rv3032 in M. tuberculosis and that of the putative methyltransferase gene MSMEG2349 in M. smegmatis resulted in a dramatic reduction in the amounts of MGLP synthesized and in the accumulation of precursors of these molecules. Disruption of Rv3032 also led to a significant decrease in the glycogen content of the tubercle bacillus, indicating that the product of this gene is likely to be involved in the elongation of more than one alpha-(1-->4)-glucan in this bacterium. Results thus suggest that Rv3032 encodes the alpha-(1-->4)-glucosyltransferase responsible for the elongation of MGLP, whereas MSMEG2349 encodes the O-methyltransferase required for the 6-O-methylation of these compounds.  相似文献   
962.
Gamma-secretase, a unique aspartyl protease, is required for the regulated intramembrane proteolysis of Notch and APP, pathways that are implicated, respectively, in the pathogenesis of cancer and Alzheimer disease. However, the mechanism whereby reduction of gamma-secretase causes tumors such as squamous cell carcinoma (SCC) remains poorly understood. Here, we demonstrate that gamma-secretase functions in epithelia as a tumor suppressor in an enzyme activity-dependent manner. Notch signaling is down-regulated and epidermal growth factor receptor (EGFR) is activated in SCC caused by genetic reduction of gamma-secretase. Moreover, the level of EGFR is inversely correlated with the level of gamma-secretase in fibroblasts, suggesting that the up-regulation of EGFR stimulates hyperproliferation in epithelia of mice with genetic reduction of gamma-secretase. Supporting this notion is our finding that the proliferative response of fibroblasts lacking gamma-secretase activity is more sensitive when challenged by either EGF or an inhibitor of EGFR as ompared with wild type cells. Interestingly, the up-regulation of EGFR is independent of Notch signaling, suggesting that the EGFR pathway functions in parallel with Notch in the tumorigenesis of SCC. Collectively, our results establish a novel mechanism linking the EGFR pathway to the tumor suppressor role of gamma-secretase and that mice with genetic reduction of gamma-secretase represent an excellent rodent model for clarifying pathogenesis of SCC and for testing therapeutic strategy to ameliorate this type of human cancer.  相似文献   
963.
Objective: This study investigated the prevalence of metabolic syndrome and its defining components among Yup'ik Eskimos. Research Methods and Procedures: A cross‐sectional study design that included 710 adult Yup'ik Eskimos ≥18 years of age residing in 8 communities in Southwest Alaska. The prevalence of metabolic syndrome was determined using the recently updated Adult Treatment Panel III criteria. Results: The prevalence of metabolic syndrome in this study cohort was 14.7%, and varied by sex with 8.6% of the men and 19.8% of the women having metabolic syndrome. This is lower than the prevalence of 23.9% in the general U.S. adult population. The most common metabolic syndrome components/risk factors were increased waist circumference and elevated blood glucose. High‐density lipoprotein (HDL) cholesterol levels in Yup'ik Eskimos were significantly higher, and triglycerides lower than levels reported in National Health and Nutritional Examination III. Discussion: Compared with other populations, metabolic syndrome is relatively uncommon in Yup'ik Eskimos. The higher prevalence among Yup'ik women is primarily explained by their large waist circumference, suggesting central body fat accumulation. Further increases in metabolic syndrome risk factors among Yup'ik Eskimos could lead to increases in the prevalence of type 2 diabetes and cardiovascular disease, once rare in this population.  相似文献   
964.
Huntington disease (HD) is a fatal neurodegenerative disorder, with no effective treatment. The pathogenic mechanisms underlying HD has not been elucidated, but weight loss, associated with chorea and cognitive decline, is a characteristic feature of the disease that is accessible to investigation. We, therefore, performed a multiparametric study exploring body weight and the mechanisms of its loss in 32 presymptomatic carriers and HD patients in the early stages of the disease, compared to 21 controls. We combined this study with a multivariate statistical analysis of plasma components quantified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. We report evidence of an early hypermetabolic state in HD. Weight loss was observed in the HD group even in presymptomatic carriers, although their caloric intake was higher than that of controls. Inflammatory processes and primary hormonal dysfunction were excluded. (1)H NMR spectroscopy on plasma did, however, distinguish HD patients at different stages of the disease and presymptomatic carriers from controls. This distinction was attributable to low levels of the branched chain amino acids (BCAA), valine, leucine and isoleucine. BCAA levels were correlated with weight loss and, importantly, with disease progression and abnormal triplet repeat expansion size in the HD1 gene. Levels of IGF1, which is regulated by BCAA, were also significantly lower in the HD group. Therefore, early weight loss in HD is associated with a systemic metabolic defect, and BCAA levels may be used as a biomarker, indicative of disease onset and early progression. The decreased plasma levels of BCAA may correspond to a critical need for Krebs cycle energy substrates in the brain that increased metabolism in the periphery is trying to provide.  相似文献   
965.
Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2)) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.  相似文献   
966.
967.
968.
The integrity and function of the epithelial barrier is dependent on the apical junctional complex (AJC) composed of tight and adherens junctions and regulated by the underlying actin filaments. A major F-actin motor, myosin II, was previously implicated in regulation of the AJC, however direct evidence of the involvement of myosin II in AJC dynamics are lacking and the molecular identity of the myosin II motor that regulates formation and disassembly of apical junctions in mammalian epithelia is unknown. We investigated the role of nonmuscle myosin II (NMMII) heavy chain isoforms, A, B, and C in regulation of epithelial AJC dynamics and function. Expression of the three NMMII isoforms was observed in model intestinal epithelial cell lines, where all isoforms accumulated within the perijunctional F-actin belt. siRNA-mediated downregulation of NMMIIA, but not NMMIIB or NMMIIC expression in SK-CO15 colonic epithelial cells resulted in profound changes of cell morphology and cell-cell adhesions. These changes included acquisition of a fibroblast-like cell shape, defective paracellular barrier, and substantial attenuation of the assembly and disassembly of both adherens and tight junctions. Impaired assembly of the AJC observed after NMMIIA knock-down involved dramatic disorganization of perijunctional actin filaments. These findings provide the first direct non-pharmacological evidence of myosin II-dependent regulation of AJC dynamics in mammalian epithelia and highlight a unique role of NMMIIA in junctional biogenesis.  相似文献   
969.
Optimization of a serotype-selective, small-molecule inhibitor of botulinum neurotoxin serotype A (BoNTA) endopeptidase is a formidable challenge because the enzyme-substrate interface is unusually large and the endopeptidase itself is a large, zinc-binding protein with a complex fold that is difficult to simulate computationally. We conducted multiple molecular dynamics simulations of the endopeptidase in complex with a previously described inhibitor (K(i) (app) of 7+/-2.4 microM) using the cationic dummy atom approach. Based on our computational results, we hypothesized that introducing a hydroxyl group to the inhibitor could improve its potency. Synthesis and testing of the hydroxyl-containing analog as a BoNTA endopeptidase inhibitor showed a twofold improvement in inhibitory potency (K(i) (app) of 3.8+/-0.8 microM) with a relatively small increase in molecular weight (16 Da). The results offer an improved template for further optimization of BoNTA endopeptidase inhibitors and demonstrate the effectiveness of the cationic dummy atom approach in the design and optimization of zinc protease inhibitors.  相似文献   
970.
Guo LT  Friedmann T  King CC 《Proteomics》2007,7(21):3867-3869
Many diseases of the mammalian CNS, including Parkinson's (PD) and Lesch Nyhan disease (LND), are associated with programmatic neurodegeneration or dysfunction of dopaminergic neurons in the mesencephalon, the nigrostriatal pathway, and its projections in the striatum [1-4]. Proteomic studies on brain tissue of both animal models and human PD patients have provided evidence for dysfunction and damage of many pathways, including oxidative stress-related damage, ubiquitin-proteasome dysfunction, mitochondrial energy metabolism deficiencies, and synaptic function [5-11]. To date no such proteomic studies have been reported in the related and rare basal ganglia disorder LND, a developmental rather than a neurodegenerative neurological disorder caused by deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) that regulates a major step in the purine salvage pathway [12]. Many studies have demonstrated that the both human LND patients and a mouse knockout model of HPRT deficiency have significantly reduced levels and uptake of dopamine in the striatum [4, 13-16] that is likely to be the principal cause of the CNS disorder. The precise molecular and cellular mechanisms that underlie this neurotransmitter defect are unknown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号