首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   17篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   10篇
  2012年   12篇
  2011年   14篇
  2010年   6篇
  2009年   5篇
  2008年   9篇
  2007年   6篇
  2006年   12篇
  2005年   3篇
  2004年   4篇
  2003年   11篇
  2002年   4篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1978年   1篇
  1935年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
71.
72.
73.
Soluble guanylyl cyclase (sGC) is a cGMP-generating enzyme implicated in the control of smooth muscle tone that also regulates platelet aggregation. Moreover, sGC activation has been shown to reduce leukocyte adherence to the endothelium. Herein, we investigated the expression of sGC in a murine model of LPS-induced lung injury and evaluated the effects of sGC inhibition in the context of acute lung injury (ALI). Lung tissue sGC alpha1 and beta1 subunit protein levels were determined by Western blot and immunohistochemistry, and steady-state mRNA levels for the beta1 subunit were assessed by real-time PCR. LPS inhalation resulted in a decrease in beta1 mRNA levels, as well as a reduction in both sGC subunit protein levels. Decreased alpha1 and beta1 expression was observed in bronchial smooth muscle and epithelial cells. TNF-alpha was required for the LPS-triggered reduction in sGC protein levels, as no change in alpha1 and beta1 levels was observed in TNF-alpha knockout mice. To determine the effects of sGC blockade in LPS-induced lung injury, mice were exposed to 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-l-one (ODQ) prior to the LPS challenge. Such pretreatment led to a further increase in total cell number (mainly due to an increase in neutrophils) and protein concentration in the bronchoalveoalar lavage fluid; the effects of ODQ were reversed by a cell-permeable cGMP analog. We conclude that sGC expression is reduced in LPS-induced lung injury, while inhibition of the enzyme with ODQ worsens lung inflammation, suggesting that sGC exerts a protective role in ALI.  相似文献   
74.
75.
Secondary degeneration of nerve tissue adjacent to a traumatic injury results in further loss of neurons, glia and function, via mechanisms that may involve oxidative stress. However, changes in indicators of oxidative stress have not yet been demonstrated in oligodendrocytes vulnerable to secondary degeneration in vivo. We show increases in the oxidative stress indicator carboxymethyl lysine at days 1 and 3 after injury in oligodendrocytes vulnerable to secondary degeneration. Dihydroethidium staining for superoxide is reduced, indicating endogenous control of this particular reactive species after injury. Concurrently, node of Ranvier/paranode complexes are altered, with significant lengthening of the paranodal gap and paranode as well as paranode disorganisation. Therapeutic administration of 670 nm light is thought to improve oxidative metabolism via mechanisms that may include increased activity of cytochrome c oxidase. Here, we show that light at 670 nm, delivered for 30 minutes per day, results in in vivo increases in cytochrome c oxidase activity co-localised with oligodendrocytes. Short term (1 day) 670 nm light treatment is associated with reductions in reactive species at the injury site. In optic nerve vulnerable to secondary degeneration superoxide in oligodendrocytes is reduced relative to handling controls, and is associated with reduced paranode abnormalities. Long term (3 month) administration of 670 nm light preserves retinal ganglion cells vulnerable to secondary degeneration and maintains visual function, as assessed by the optokinetic nystagmus visual reflex. Light at a wavelength of 670 nm may serve as a therapeutic intervention for treatment of secondary degeneration following neurotrauma.  相似文献   
76.
77.
We describe four unrelated children who were referred to two tertiary referral medical genetics units between 1991 and 2005 and who are affected with juvenile polyposis of infancy. We show that these children are heterozygous for a germline deletion encompassing two contiguous genes, PTEN and BMPR1A. We hypothesize that juvenile polyposis of infancy is caused by the deletion of these two genes and that the severity of the disease reflects cooperation between these two tumor-suppressor genes.  相似文献   
78.
79.
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) encodes a tumor-suppressor phosphatase frequently mutated in both sporadic and heritable forms of human cancer. Germline mutations are associated with a number of heritable cancer syndromes that are jointly referred to as the "PTEN hamartoma tumor syndrome" (PHTS) and include Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, Proteus syndrome, and Proteus-like syndrome. Germline PTEN mutations have been identified in a significant proportion of patients with PHTS; however, there are still many individuals with classic diagnostic features for whom mutations have yet to be identified. To address this, we took a haplotype-based approach and investigated the association of specific genomic regions of the PTEN locus with PHTS. We found this locus to be characterized by three distinct haplotype blocks 33 kb, 65 kb, and 43 kb in length. Comparisons of the haplotype distributions for all three blocks differed significantly among patients with PHTS and controls (P=.0098, P<.0001, and P<.0001 for blocks 1, 2, and 3, respectively). "Rare" haplotype blocks and extended haplotypes account for two-to-threefold more PHTS chromosomes than control chromosomes. PTEN mutation-negative patients are strongly associated with a haplotype block spanning a region upstream of PTEN and the gene's first intron (P=.0027). Furthermore, allelic combinations contribute to the phenotypic complexity of this syndrome. Taken together, these data suggest that specific haplotypes and rare alleles underlie the disease etiology in these sample populations; constitute low-penetrance, modifying loci; and, specifically in the case of patients with PHTS for whom traditional mutations have yet to be identified, may harbor pathogenic variant(s) that have escaped detection by standard PTEN mutation-scanning methodologies.  相似文献   
80.
Soluble guanylyl cyclase (sGC) is an enzyme highly expressed in the lung that generates cGMP contributing to airway smooth muscle relaxation. To determine whether the bronchoconstriction observed in asthma is accompanied by changes in sGC expression, we used a well-established murine model of allergic asthma. Histological and biochemical analyses confirmed the presence of inflammation in the lungs of mice sensitized and challenged with ovalbumin (OVA). Moreover, mice sensitized and challenged with OVA exhibited airway hyperreactivity to methacholine inhalation. Steady-state mRNA levels for all sGC subunits (alpha1, alpha2, and beta1) were reduced in the lungs of mice with allergic asthma by 60-80%, as estimated by real-time PCR. These changes in mRNA were paralleled by changes at the protein level: alpha1, alpha2, and beta1 expression was reduced by 50-80% as determined by Western blotting. Reduced alpha1 and beta1 expression in bronchial smooth muscle cells was demonstrated by immunohistochemistry. To study if sGC inhibition mimics the airway hyperreactivity seen in asthma, we treated na?ve mice with a selective sGC inhibitor. Indeed, in mice receiving ODQ the methacholine dose response was shifted to the left. We conclude that sGC expression is reduced in experimental asthma contributing to the observed airway hyperreactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号