首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   7篇
  128篇
  2023年   1篇
  2022年   7篇
  2021年   5篇
  2019年   3篇
  2018年   6篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   10篇
  2013年   6篇
  2012年   7篇
  2011年   11篇
  2010年   4篇
  2009年   3篇
  2008年   17篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2002年   4篇
  2001年   1篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1979年   3篇
  1974年   1篇
排序方式: 共有128条查询结果,搜索用时 0 毫秒
51.
The common air pollutant ozone causes acute toxicity to human airways. In primary and transformed epithelial cells from all levels of human or rat airways, ozone levels relevant to air pollution (50-200 ppb) increased extracellular [ATP] within 7-30 min. A human bronchial epithelial cell line (16HBE14o(-)) that forms electrically resistant polarized monolayers had up to 10-fold greater apical than basolateral surface extracellular [ATP] within 7 min of ozone exposure. Increased extracellular [ATP] appeared due to ATP secretion or release because (1) inhibition of ectonucleotidase (cell surface enzyme(s) which degrade ATP) by ozone did not occur until >120 min of ozone exposure and (2) brefeldin A, a secretory inhibitor, eliminated elevation of extracellular [ATP] without affecting intracellular ATP. Extracellular ATP protected against ozone toxicity in a P2Y receptor-dependent manner as (1) removal of ATP and adenosine by apyrase and adenosine deaminase, respectively, potentiated ozone toxicity, (2) extracellular supplementation with ATP, a poorly hydrolyzable ATP analog ATPgammaS, or UTP inhibited apoptotic and necrotic ozone-mediated cell death, and (3) ATP-mediated protection was eliminated by P2 and P2Y receptor inhibitors suramin and Cibacron blue (reactive blue 2), respectively. The decline in glucose uptake caused by prolonged ozone exposure was prevented by supplemental extracellular ATP, an effect blocked by suramin. Further, Akt and ERK phosphorylation resulted from exposure to supplemental extracellular ATP. Thus, extracellularly released ATP signals to prevent ozone-induced death and supplementation with ATP or its analogs can augment protection, at least in part via Akt and /or ERK signaling pathways and their metabolic effects.  相似文献   
52.
53.
C.E. JONES, G. SHAMA, P.W. ANDREW, I.S. ROBERTS AND D.JONES. 1995 A basic requirement for physiological studies with Listeria monocytogenes is a chemically defined medium that supports growth of the bacterium in batch and continuous culture. A number of such media have been devised but comparative studies of their efficiency are few and none has been used in continuous culture. Six of the media were compared for their ability to sustain sequential growth of L. monocytogenes in static and aerated batch culture with glucose as sole carbon source. The most suitable, judged on the basis of ease of preparation, growth rate and yield, was that of Trivett and Meyer (1971). This medium was shown to support growth of L. monocytogenes NCTC 7973 in continuous culture in a chemostat. A lytic phenomenon, noted with the same strain under anaerobic conditions and in batch culture in the chemostat, is discussed.  相似文献   
54.
A lactate dehydrogenase deficient strain of B. stearothermophilus, lld-15, was outgrown by revertants to lactate production when cultivated in a chemostat at D = 0.25 h?1 on a rich complex medium at a sucrose concentration of 2.5% (w/v) but was maintained without reversion at this dilution rate when the sucrose concentration was only 0.5% (w/v). In batch culture the revertant showed characteristics which distinguished it both from B. stearothermophilus strains lld-15 and NCA 1503.  相似文献   
55.
The replicative life span ofSaccharomyces cerevisiaewas previously shown to be modulated by the homologous signal transducers Ras1p and Ras2p in a reciprocal manner. We have used thermal stress as a life span modulator in order to uncover functional differences between theRASgenes that may contribute to their divergent effects on life span. Chronic exposure of cells throughout life to recurring heat shocks at sublethal temperatures decreased their replicative life span.ras2mutants, however, suffered the largest decrease compared to wild-type andras1mutant cells. The decrease was correlated with a substantial delay in resumption of budding upon recovery from these heat shocks, indicating an impaired renewal of cell cycling. Detailed analysis of gene expression showed that, during recovery,ras2mutants were selectively impaired in down-regulation of stress-responsive genes and up-regulation of growth-promoting genes. Our results suggest that one of the functions ofRAS2in maintaining life span, for whichRAS1does not substitute, is to ensure renewal of growth and cell division after bouts of stress that cells encounter during their life. This activity ofRAS2is effected by the cyclic AMP pathway. Overexpression ofRAS2,but notRAS2ser42which is deficient in the activation of adenylate cyclase, completely reversed the effect of chronic stress on life span. Thus,RAS2is limiting for longevity in the face of chronic stress. SinceRAS2is known to down-regulate stress responses, this demonstrates that for longevity the ability to recover from stress is at least as important as the ability to mount a stress response.  相似文献   
56.
The metathoracic scent glands in the Heteroptera produce defence secretions which are spread outside the body through and by using the thoracic external scent efferent system. That complex system was studied in 18 species from 11 genera of four subfamilies, Elvisurinae, Eurygastrinae, Hoteinae and Scutellerinae of the family Scutelleridae (Pentatomoidea). The results have been compared with published data. The pattern of that system is more consistent at the level of genus, mostly very similar in the congeneric species, but mostly variable within higher taxonomic levels, tribes and subfamilies. Five types of the external scent efferent system are recognized within the family Scutelleridae, basic two of them in studied species: (i) peritreme well developed, covering large part of metapleuron, evaporatorium small, developed only on metapleuron, (ii) evaporatorium large, more conspicuous than moderate-sized to small peritreme, extending to mesopleuron as large structure. The results do not support a hypothesis that the system of structures associated externally with metathoracic scent glands is in correlation with type of a habitat. However, these structures are well usable as diagnostic characters for scutellerid genera (e.g. Cantao, Hyperonchus, Scutellera and Solenosthedium).  相似文献   
57.
Theoretical models predict that nonlinear environmental effects on the phenotype also affect developmental canalization, which in turn can influence the tempo and course of organismal evolution. Here, we used an oceanic population of threespine stickleback (Gasterosteus aculeatus) to investigate temperature‐induced phenotypic plasticity of body size and shape using a paternal half‐sibling, split‐clutch experimental design and rearing offspring under three different temperature regimes (13, 17 and 21 °C). Body size and shape of 466 stickleback individuals were assessed by a set of 53 landmarks and analysed using geometric morphometric methods. At approximately 100 days, individuals differed significantly in both size and shape across the temperature groups. However, the temperature‐induced differences between 13 and 17 °C (mainly comprising relative head and eye size) deviated considerably from those between 17 and 21 °C (involving the relative size of the ectocoracoid, the operculum and the ventral process of the pelvic girdle). Body size was largest at 17 °C. For both size and shape, phenotypic variance was significantly smaller at 17 °C than at 13 and 21 °C, indicating that development is most stable at the intermediate temperature matching the conditions encountered in the wild. Higher additive genetic variance at 13 and 21 °C indicates that the plastic response to temperature had a heritable basis. Understanding nonlinear effects of temperature on development and the underlying genetics are important for modelling evolution and for predicting outcomes of global warming, which can lead not only to shifts in average morphology but also to destabilization of development.  相似文献   
58.
Serotonin (5-hydroxytryptamine; 5-HT) is a CNS neurotransmitter increasingly recognized to exert immunomodulatory effects outside the CNS that contribute to the pathogenesis of autoimmune and chronic inflammatory diseases. 5-HT signals to activate the RhoA/Rho kinase (ROCK) pathway, a pathway known for its ability to regulate phagocytosis. The clearance of apoptotic cells (i.e. efferocytosis) is a key modulator of the immune response that is inhibited by the RhoA/ROCK pathway. Because efferocytosis is defective in many of the same illnesses where 5-HT has been implicated in disease pathogenesis, we hypothesized that 5-HT would suppress efferocytosis via activation of RhoA/ROCK. The effect of 5-HT on efferocytosis was examined in murine peritoneal and human alveolar macrophages, and its mechanisms were investigated using pharmacologic blockade and genetic deletion. 5-HT impaired efferocytosis by murine peritoneal macrophages and human alveolar macrophages. 5-HT increased phosphorylation of myosin phosphatase subunit 1 (Mypt-1), a known ROCK target, and inhibitors of RhoA and ROCK reversed the suppressive effect of 5-HT on efferocytosis. Peritoneal macrophages expressed the 5-HT transporter and 5-HT receptors (R) 2a, 2b, but not 2c. Inhibition of 5-HTR2a and 5-HTR2b had no effect on efferocytosis, but blockade of the 5-HT transporter prevented 5-HT-impaired efferocytosis. Genetic deletion of the 5-HT transporter inhibited 5-HT uptake into peritoneal macrophages, prevented 5-HT-induced phosphorylation of Mypt-1, reversed the inhibitory effect of 5-HT on efferocytosis, and decreased cellular peritoneal inflammation. These results suggest a novel mechanism by which 5-HT might disrupt efferocytosis and contribute to the pathogenesis of autoimmune and chronic inflammatory diseases.  相似文献   
59.
High oxygen concentrations (hyperoxia), often required in the treatment of preterm infants and critically ill patients, cause lung injury, targeting especially the endothelium. Exposure of primary human lung microvascular endothelial cells (HLMVEC) to hyperoxia caused transient Akt activation after 60 min, as determined by Western blot analysis of phosphorylated Ser 473 of Akt. Akt phosphorylation was also increased after 24 h of hyperoxic exposure, which declined at 48 h. Adenoviral (Ad)-mediated expression of constitutively active myrAkt protected HLMVEC against hyperoxic injury. Cell death due to hyperoxia (95% O2, 8 days), which was primarily necrotic, was substantial in control and Ad-LacZ-transduced cells, but was diminished by almost half in myrAkt-transduced cells. Hyperoxia caused increased cellular glucose consumption, an effect that was amplified in cells transduced with myrAkt compared to the LacZ-transduced or the nontransduced controls. Increased glucose consumption in myrAkt-expressing cells was accompanied by increased phosphorylation of mTOR and p70 S6-kinase. Rapamycin treatment decreased glucose consumption in myrAkt-transduced cells to levels comparable to those in control and LacZ-transduced cells exposed to hyperoxia. Ultrastructural morphometric analyses demonstrated that mitochondria and endoplasmic reticulum were less swollen in myrAkt cells relative to controls exposed to hyperoxia. These studies demonstrate that early activation of Akt occurs in hyperoxia in HLMVEC. That this event is a beneficial response is suggested by the finding that constitutive activation of Akt protects against hyperoxic stress, at least in part, by maintaining mitochondrial integrity.  相似文献   
60.
Proteomics has been proposed as one of the key technologies in the postgenomic era. So far, however, the comprehensive analysis of cellular proteomes has been a challenge because of the dynamic nature and complexity of the multitude of proteins in cells and tissues. Various approaches have been established for the analyses of proteins in a cell at a given state, and mass spectrometry (MS) has proven to be an efficient and versatile tool. MS-based proteomics approaches have significantly improved beyond the initial identification of proteins to comprehensive characterization and quantification of proteomes and their posttranslational modifications (PTMs). Despite these advances, there is still ongoing development of new technologies to profile and analyze cellular proteomes more completely and efficiently. In this review, we focus on MS-based techniques, describe basic approaches for MS-based profiling of cellular proteomes and analysis methods to identify proteins in complex mixtures, and discuss the different approaches for quantitative proteome analysis. Finally, we briefly discuss novel developments for the analysis of PTMs. Altered levels of PTM, sometimes in the absence of protein expression changes, are often linked to cellular responses and disease states, and the comprehensive analysis of cellular proteome would not be complete without the identification and quantification of the extent of PTMs of proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号