排序方式: 共有183条查询结果,搜索用时 15 毫秒
61.
Berret B Darlot C Jean F Pozzo T Papaxanthis C Gauthier JP 《PLoS computational biology》2008,4(10):e1000194
An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements. Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-work-like cost is supported by experimental observations. Such types of optimality criteria may be applied to a large range of biological movements. 相似文献
62.
Roelof A. Hut Silvia Paolucci Roi Dor Charalambos P. Kyriacou Serge Daan 《Proceedings. Biological sciences / The Royal Society》2013,280(1765)
Properties of the circadian and annual timing systems are expected to vary systematically with latitude on the basis of different annual light and temperature patterns at higher latitudes, creating specific selection pressures. We review literature with respect to latitudinal clines in circadian phenotypes as well as in polymorphisms of circadian clock genes and their possible association with annual timing. The use of latitudinal (and altitudinal) clines in identifying selective forces acting on biological rhythms is discussed, and we evaluate how these studies can reveal novel molecular and physiological components of these rhythms. 相似文献
63.
Motor imagery, i.e., a mental state during which an individual internally represents an action without any overt motor output, is a potential tool to investigate action representation during development. Here, we took advantage of the inertial anisotropy phenomenon to investigate whether children can generate accurate motor predictions for movements with varying dynamics. Children (9 and 11 years), adolescents (14 years) and young adults (21 years) carried-out actual and mental arm movements in two different directions in the horizontal plane: rightwards (low inertia) and leftwards (high inertia). We recorded and compared actual and mental movement times. We found that actual movement times were greater for leftward than rightward arm movements in all groups. For mental movements, differences between leftward versus rightward movements were observed in the adults and adolescents, but not among the children. Furthermore, significant differences between actual and mental times were found at 9 and 11 years of age in the leftward direction. The ratio R/L (rightward direction/leftward direction), which indicates temporal differences between low inertia and high inertia movements, was inferior to 1 at all ages, except for the mental movements at 9 years of age, indicating than actual and mental movements were shorter for the rightward than leftward direction. Interestingly, while the ratio R/L of actual movements was constant across ages, it gradually decreased with age for mental movements. The ratio A/M (actual movement/mental movement), which indicates temporal differences between actual and mental movements, was near to 1 in the adults'' groups, denoting accurate mental timing. In children and adolescents, an underestimation of mental movement times appeared for the leftward movements only. However, this overestimation gradually decreased with age. Our results showed a refinement in the motor imagery ability during development. Action representation reached maturation at adolescence, during which mental actions were tightly related to their actual production. 相似文献
64.
Drabek D Zagoraiou L deWit T Langeveld A Roumpaki C Mamalaki C Savakis C Grosveld F 《Genomics》2003,81(2):108-111
We tested the suitability of the fly transposon Minos, a member of the Tc1/mariner superfamily, for insertional mutagenesis in the mouse germ line. We generated a transgenic mouse line expressing Minos transposase in growing oocytes and another carrying a tandem array of nonautonomous transposons. The frequency of transposition in the progeny derived from oocytes carrying both transgenes is 8.2%. Analysis of the new integration sites shows a high frequency of transpositions to a different chromosome. Thus Minos transposition could be an effective system for insertional mutagenesis and functional genomic analysis in the mouse. 相似文献
65.
66.
67.
Tsoukatos DC Brochériou I Moussis V Panopoulou CP Christofidou ED Koussissis S Sismanidis S Ninio E Siminelakis S 《Journal of lipid research》2008,49(10):2240-2249
Platelet-activating factor (PAF), the potent phospholipid mediator of inflammation, is involved in atherosclerosis. Platelet-activating factor-acetylhydrolase (PAF-AH), the enzyme that inactivates PAF bioactivity, possesses both acetylhydrolase and transacetylase activities. In the present study, we measured acetylhydrolase and transacetylase activities in human atherogenic aorta and nonatherogenic mammary arteries. Immunohistochemistry analysis showed PAF-AH expression in the intima and the media of the aorta and in the media of mammary arteries. Acetylhydrolase and transacetylase activities were (mean +/- SE, n = 38): acetylhydrolase of aorta, 2.8 +/- 0.5 pmol/min/mg of tissue; transacetylase of aorta, 3.3 +/- 0.7 pmol/min/mg of tissue; acetylhydrolase of mammary artery, 1.4 +/- 0.3 pmol/min/mg of tissue (P < 0.004 as compared with acetylhydrolase of aorta); transacetylase of mammary artery, 0.8 +/- 0.2 pmol/min/mg of tissue (P < 0.03 as compared with acetylhydrolase of mammary artery). Lyso-PAF accumulation and an increase in PAF bioactivity were observed in the aorta of some patients. Reverse-phase HPLC and electrospray ionization mass spectrometry analysis revealed that 1-O-hexadecyl-2 acetyl-sn glycero-3-phosphocholine accounted for 60% of the PAF bioactivity and 1-O-hexadecyl-2-butanoyl-sn-glycerol-3-phosphocholine for 40% of the PAF bioactivity. The nonatherogenic properties of mammary arteries may in part be due to low PAF formation regulated by PAF-AH activity. In atherogenic aortas, an imbalance between PAF-AH and transacetylase activity, as well as lyso-PAF accumulation, may lead to unregulated PAF formation and to progression of atherosclerosis. 相似文献
68.
Charalambos Fotakis Grigorios Megariotis Dionysios Christodouleas Eftichia Kritsi Panagiotis Zoumpoulakis Dimitrios Ntountaniotis Maria Zervou Constantinos Potamitis Aden Hodzic Georg Pabst Michael Rappolt Gregor Mali Johanna Baldus Clemens Glaubitz Manthos G. Papadopoulos Antreas Afantitis Georgia Melagraki Thomas Mavromoustakos 《生物化学与生物物理学报:生物膜》2012,1818(12):3107-3120
Drug–membrane interactions of the candesartan cilexetil (TCV-116) have been studied on molecular basis by applying various complementary biophysical techniques namely differential scanning calorimetry (DSC), Raman spectroscopy, small and wide angle X-ray scattering (SAXS and WAXS), solution 1H and 13C nuclear magnetic resonance (NMR) and solid state 13C and 31P (NMR) spectroscopies. In addition, 31P cross polarization (CP) NMR broadline fitting methodology in combination with ab initio computations has been applied. Finally molecular dynamics (MD) was applied to find the low energy conformation and position of candesartan cilexetil in the bilayers. Thus, the experimental results complemented with in silico MD results provided information on the localization, orientation, and dynamic properties of TCV-116 in the lipidic environment. The effects of this prodrug have been compared with other AT1 receptor antagonists hitherto studied. The prodrug TCV-116 as other sartans has been found to be accommodated in the polar/apolar interface of the bilayer. In particular, it anchors in the mesophase region of the lipid bilayers with the tetrazole group oriented toward the polar headgroup spanning from water interface toward the mesophase and upper segment of the hydrophobic region. In spite of their localization identity, their thermal and dynamic effects are distinct pointing out that each sartan has its own fingerprint of action in the membrane bilayer, which is determined by the parameters derived from the above mentioned biophysical techniques. 相似文献
69.
Robert K Jansen Charalambos Kaittanis Christopher Saski Seung-Bum Lee Jeffrey Tomkins Andrew J Alverson Henry Daniell 《BMC evolutionary biology》2006,6(1):32-14
Background
The Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids. 相似文献70.
Arianna Filntisi Charalambos Fotakis Pantelis Asvestas George K. Matsopoulos Panagiotis Zoumpoulakis Dionisis Cavouras 《Metabolomics : Official journal of the Metabolomic Society》2017,13(12):146