首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1660篇
  免费   152篇
  国内免费   144篇
  2024年   3篇
  2023年   20篇
  2022年   64篇
  2021年   90篇
  2020年   63篇
  2019年   94篇
  2018年   83篇
  2017年   43篇
  2016年   73篇
  2015年   128篇
  2014年   143篇
  2013年   135篇
  2012年   153篇
  2011年   140篇
  2010年   78篇
  2009年   74篇
  2008年   81篇
  2007年   63篇
  2006年   73篇
  2005年   47篇
  2004年   37篇
  2003年   34篇
  2002年   42篇
  2001年   22篇
  2000年   29篇
  1999年   16篇
  1998年   11篇
  1997年   17篇
  1996年   12篇
  1995年   19篇
  1994年   7篇
  1993年   10篇
  1992年   6篇
  1991年   9篇
  1990年   10篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1956条查询结果,搜索用时 15 毫秒
971.
Definitive allocation of function requires the introduction of genetic mutations and analysis of their phenotypic consequences. Novel, rapid and convenient techniques or materials are very important and useful to accelerate gene identification in functional genomics research. Here, over‐expression of PmFT (Prunus mume), a novel FT orthologue, and PtFT (Populus tremula) lead to shortening of the tobacco life cycle. A series of novel short life cycle stable tobacco lines (30–50 days) were developed through repeated self‐crossing selection breeding. Based on the second transformation via a gusA reporter gene, the promoter from BpFULL1 in silver birch (Betula pendula) and the gene (CPC) from Arabidopsis thaliana were effectively tested using short life cycle tobacco lines. Comparative analysis among wild type, short life cycle tobacco and Arabidopsis transformation system verified that it is optional to accelerate functional gene studies by shortening host plant material life cycle, at least in these short life cycle tobacco lines. The results verified that the novel short life cycle transgenic tobacco lines not only combine the advantages of economic nursery requirements and a simple transformation system, but also provide a robust, effective and stable host system to accelerate gene analysis. Thus, shortening tobacco life cycle strategy is feasible to accelerate heterologous or homologous functional gene identification in genomic research.  相似文献   
972.
Peng F  Xu Z  Wang J  Chen Y  Li Q  Zuo Y  Chen J  Hu X  Zhou Q  Wang Y  Ma H  Bao Y  Chen M 《PloS one》2012,7(4):e34646

Background

Hypoxic tumor cells can reduce the efficacy of radiation. Antiangiogenic therapy may transiently “normalize” the tumor vasculature to make it more efficient for oxygen delivery. The aim of this study is to investigate whether the recombinant human endostatin (endostar) can create a “vascular normalization window” to alleviate hypoxia and enhance the inhibitory effects of radiation therapy in human nasopharyngeal carcinoma (NPC) in mice.

Methodology/Principal Findings

Transient changes in morphology of tumor vasculature and hypoxic tumor cell fraction in response to endostar were detected in mice bearing CNE-2 and 5–8F human NPC xenografts. Various treatment schedules were tested to assess the influence of endostar on the effect of radiation therapy. Several important factors relevant to the angiogenesis were identified through immunohistochemical staining. During endostar treatment, tumor vascularity decreased, while the basement membrane and pericyte coverage associated with endothelial cells increased, which supported the idea of vessel normalization. Hypoxic tumor cell fraction also decreased after the treatment. The transient modulation of tumor physiology caused by endostar improved the effect of radiation treatment compared with other treatment schedules. The expressions of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), MMP-9, and MMP-14 decreased, while the level of pigment epithelium-derived factor (PEDF) increased.

Conclusions

Endostar normalized tumor vasculature, which alleviated hypoxia and significantly sensitized the function of radiation in anti-tumor in human NPC. The results provide an important experimental basis for combining endostar with radiation therapy in human NPC.  相似文献   
973.
Fan Q  Yan X  Wang J  Chen Y  Wang X  Li C  Tan L  You C  Zhang T  Zuo S  Xu D  Chen K  Finlayson-Burden JM  Xiao Z 《PloS one》2012,7(4):e35889

Background

Abnormalities of myelin integrity have been reported in obsessive-compulsive disorder (OCD) using multi-parameter maps of diffusion tensor imaging (DTI). However, it was still unknown to what degree these abnormalities might be affected by pharmacological treatment.

Objective

To investigate whether the abnormalities of white matter microstructure including myelin integrity exist in OCD and whether they are affected by medication.

Methodology and Principal Findings

Parameter maps of DTI, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were acquired from 27 unmedicated OCD patients (including 13 drug-naïve individuals) and 23 healthy controls. Voxel-based analysis was then performed to detect regions with significant group difference. We compared the DTI-derived parameters of 15 patients before and after 12-week Selective Serotonin Reuptake Inhibitor (SSRI) therapies. Significant differences of DTI-derived parameters were observed between OCD and healthy groups in multiple structures, mainly within the fronto-striato-thalamo-cortical loop. An increased RD in combination with no change in AD among OCD patients was found in the left medial superior frontal gyrus, temporo-parietal lobe, occipital lobe, striatum, insula and right midbrain. There was no statistical difference in DTI-derived parameters between drug-naive and previously medicated OCD patients. After being medicated, OCD patients showed a reduction in RD of the left striatum and right midbrain, and in MD of the right midbrain.

Conclusion

Our preliminary findings suggest that abnormalities of white matter microstructure, particularly in terms of myelin integrity, are primari ly located within the fronto-striato-thalamo-cortical circuit of individuals with OCD. Some abnormalities may be partly reversed by SSRI treatment.  相似文献   
974.
Yuan Y  Zhang X  Huang S  Zuo L  Zhang G  Song Y  Wang G  Wang H  Huang D  Han D  Dai P 《PloS one》2012,7(2):e30720

Background

Thirty thousand infants are born every year with congenital hearing impairment in mainland China. Racial and regional factors are important in clinical diagnosis of genetic deafness. However, molecular etiology of hearing impairment in the Tibetan Chinese population living in the Tibetan Plateau has not been investigated. To provide appropriate genetic testing and counseling to Tibetan families, we investigated molecular etiology of nonsyndromic deafness in this population.

Methods

A total of 114 unrelated deaf Tibetan children from the Tibet Autonomous Region were enrolled. Five prominent deafness-related genes, GJB2, SLC26A4, GJB6, POU3F4, and mtDNA 12S rRNA, were analyzed. Inner ear development was evaluated by temporal CT. A total of 106 Tibetan hearing normal individuals were included as genetic controls. For radiological comparison, 120 patients, mainly of Han ethnicity, with sensorineural hearing loss were analyzed by temporal CT.

Results

None of the Tibetan patients carried diallelic GJB2 or SLC26A4 mutations. Two patients with a history of aminoglycoside usage carried homogeneous mtDNA 12S rRNA A1555G mutation. Two controls were homozygous for 12S rRNA A1555G. There were no mutations in GJB6 or POU3F4. A diagnosis of inner ear malformation was made in 20.18% of the Tibetan patients and 21.67% of the Han deaf group. Enlarged vestibular aqueduct, the most common inner ear deformity, was not found in theTibetan patients, but was seen in 18.33% of the Han patients. Common molecular etiologies, GJB2 and SLC26A4 mutations, were rare in the Tibetan Chinese deaf population.

Conclusion

The mutation spectrum of hearing loss differs significantly between Chinese Tibetan patients and Han patients. The incidence of inner ear malformation in Tibetans is almost as high as that in Han deaf patients, but the types of malformation vary greatly. Hypoxia and special environment in plateau may be one cause of developmental inner ear deformity in this population.  相似文献   
975.
Yang XH  Feng ZE  Yan M  Hanada S  Zuo H  Yang CZ  Han ZG  Guo W  Chen WT  Zhang P 《PloS one》2012,7(3):e31601

Background

Approximately 60–80% of patients with advanced head and neck squamous cell carcinoma (HNSCC) die within five years after diagnosis. Cisplatin-based chemotherapy is the most commonly used palliative treatment for these patients. To evaluate the prognostic value of X-linked inhibitor of apoptosis (XIAP) level as a potential biomarker in these patients, we investigated the relationship between XIAP expression and cisplatin response of these patients and their prognosis.

Methodology/Principal Findings

Sixty patients with advanced HNSCC were recruited in this study. Expression of XIAP was examined both before and after chemotherapy and was correlated with chemotherapy response, clinicopathology parameters and clinical outcomes of the patients. We found that XIAP was expressed in 17 (20.83%) of the 60 advanced HNSCC samples and the expression was significantly associated with cisplatin resistance (P = 0.036) and poor clinical outcome (P = 0.025). Cisplatin-based chemotherapy induced XIAP expression in those post-chemotherapy samples (P = 0.011), was further associated with poorer clinical outcome (P = 0.029). Multivariate analysis demonstrated that only alcohol consumption, lymph node metastasis and XIAP level were independently associated with the prognosis of advanced HNSCC patients. Inhibiting XIAP expression with siRNA in XIAP overexpressed HNSCC cells remarkably increased their sensitivity to cisplatin treatment to nearly a 3 fold difference.

Conclusions/Significance

Our results demonstrate that XIAP overexpression plays an important role in the disease course and cisplatin-resistance of advanced HNSCC. XIAP is a valuable predictor of cisplatin-response and prognosis for patients with advanced head and neck cancer. Down-regulation of XIAP might be a promising adjuvant therapy for those patients of advanced HNSCC.  相似文献   
976.
XR Zuo  Q Wang  Q Cao  YZ Yu  H Wang  LQ Bi  WP Xie  H Wang 《PloS one》2012,7(9):e44485

Background

Most of the deaths among patients with severe pulmonary arterial hypertension (PAH) are caused by progressive right ventricular (RV) pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear.

Methodology/Principal Findings

RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT). RV systolic pressure (RVSP) was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP) ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD) reversed these beneficial effects of nicorandil in MCT-injected rats.

Conclusions/Significance

Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K+ (mitoKATP) channels. The use of a mitoKATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV remodeling during the early stages of PAH.  相似文献   
977.
Zuo ZC  Meng YY  Yu XH  Zhang ZL  Feng DS  Sun SF  Liu B  Lin CT 《Molecular plant》2012,5(3):726-733
Arabidopsis cryptochrome 2 (CRY2) is a blue-light receptor mediating blue-light inhibition of hypocotyl elongation and photoperiodic promotion of floral initiation. CRY2 is a constitutive nuclear protein that undergoes blue-light-dependent phosphorylation, ubiquitination, photobody formation, and degradation in the nucleus, but the relationship between these blue-light-dependent events remains unclear. It has been proposed that CRY2 phosphorylation triggers a conformational change responsible for the subsequent ubiquitination and photobody formation, leading to CRY2 function and/or degradation. We tested this hypothesis by a structure-function study, using mutant CRY2-GFP fusion proteins expressed in transgenic Arabidopsis. We show that changes of lysine residues of the NLS (Nuclear Localization Signal) sequence of CRY2 to arginine residues partially impair the nuclear importation of the CRY2K541R and CRY2K554/5R mutant proteins, resulting in reduced phosphorylation, physiological activities, and degradation in response to blue light. In contrast to the wild-type CRY2 protein that forms photobodies exclusively in the nucleus, the CRY2K541R and CRY2K554/5R mutant proteins form protein bodies in both the nucleus and cytosol in response to blue light. These results suggest that photoexcited CRY2 molecules can aggregate to form photobody-like structure without the nucleus-dependent protein modifications or the association with the nuclear CRY2-interacting proteins. Taken together, the observation that CRY2 forms photobodies markedly faster than CRY2 phosphorylation in response to blue light, we hypothesize that the photoexcited cryptochromes form oligomers, preceding other biochemical changes of CRY2, to facilitate photobody formation, signal amplification, and propagation, as well as desensitization by degradation.  相似文献   
978.
Protoporphyrinogen oxidase (Protox, EC 1.3.3.4) has attracted great interest during the last decades due to its unique biochemical characteristics and biomedical significance. As a continuation of our research work on the development of new PPO inhibitors, 23 new 1,3,4-thiadiazol-2(3H)-ones bearing benzothiazole substructure were designed and synthesized. The in vitro assay indicated that the newly synthesized compounds 1a-w displayed good inhibition activity against human PPO (hPPO) with K(i) values ranging from 0.04μM to 245μM. To the knowledge, compound 1a, O-ethyl S-(5-(5-(tert-butyl)-2-oxo-1,3,4-thiadiazol-3(2H)-yl)-6-fluorobenzothiazol-2-yl)carbonothioate, with the K(i) value of 40nM, is so far known as the most potent inhibitor against hPPO. Based on the molecular docking and modified molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) calculations, the quantitative structure-activity relationships of 1,3,4-thiadiazol-2(3H)-ones and 1,3,4-oxadiazol-2(3H)-one derivatives were established with excellent correlation relationships (r(2)=0.81) between the calculated and experimental binding free energies. Some important insights were also concluded for guiding the future rational design of new hPPO inhibitors with improved potency.  相似文献   
979.
Li MY  Zhang YB  Zuo H  Liu LL  Niu JZ 《生理学报》2012,64(1):41-47
The present study was to investigate the effect of Salvia miltiorrhiza Bunge. f. alba (SMA) pharmacological pretreatment on apoptosis of cultured hippocampal neurons from neonate rats under oxygen-glucose deprivation (OGD). Cultured hippocampal neurons were randomly divided into five groups (n = 6): normal plasma group, low dose SMA plasma (2.5%) group, middle dose SMA plasma (5%) group, high dose SMA plasma (10%) group and control group. The hippocampal neurons were cultured and treated with plasma from adult Wistar rats intragastrically administered with saline or aqueous extract of SMA. The apoptosis of neurons was induced by glucose-free Earle's solution containing 1 mmol/L Na2S2O4 and labeled by MTT and Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in control group, whereas the number of apoptotic cells was greatly increased in normal plasma group and low dose SMA plasma group. Both middle and high dose SMA plasma could protect cultured hippocampal neurons from apoptosis induced by OGD (P < 0.05). The protective effect of high dose SMA plasma was stronger than that of middle one (P < 0.05). Compared to control, normal plasma and low dose SMA plasma groups, middle and high dose SMA plasma groups both showed significantly higher levels of Bcl-2 (P < 0.05 or 0.01), whereas expressions of Bax was opposite. There were no significant differences of Bcl-2 and Bax expressions between middle and high dose SMA plasma groups. Number of Bcl-2- and Bax-positive cells had similar tendency. Bcl-2/Bax (number of positive cells) ratio was higher in high dose SMA plasma group than those of all the other groups (P < 0.05 or 0.01). These results suggest that pharmacological pretreatment of blood plasma containing middle and high dose SMA could raise viability and inhibit apoptosis of OGD-injured hippocampal neurons by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax.  相似文献   
980.
Influenza A virus infection is a persistent threat to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号