首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9255篇
  免费   707篇
  国内免费   987篇
  2024年   20篇
  2023年   111篇
  2022年   308篇
  2021年   514篇
  2020年   381篇
  2019年   455篇
  2018年   379篇
  2017年   277篇
  2016年   411篇
  2015年   589篇
  2014年   701篇
  2013年   786篇
  2012年   893篇
  2011年   766篇
  2010年   491篇
  2009年   465篇
  2008年   531篇
  2007年   466篇
  2006年   385篇
  2005年   297篇
  2004年   293篇
  2003年   260篇
  2002年   212篇
  2001年   146篇
  2000年   128篇
  1999年   129篇
  1998年   82篇
  1997年   62篇
  1996年   52篇
  1995年   60篇
  1994年   64篇
  1993年   40篇
  1992年   36篇
  1991年   43篇
  1990年   31篇
  1989年   23篇
  1988年   11篇
  1987年   10篇
  1986年   12篇
  1985年   12篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Zhang P  Ma Y  Wang F  Yang J  Liu Z  Peng J  Qin H 《Molecular biology reports》2012,39(2):1471-1478
Accumulating evidence has demonstrated that miRNAs play important roles in the occurrence and development of colorectal cancer (CRC). However, whether miRNAs are associated with the metastasis of CRC remains largely unexplored. The aim of the current study is to profile miRNAs in different CRC metastatic cell lines to identify the biomarkers in CRC metastasis. Gene and miRNA expression profiling was performed to analyze the global expression of mRNAs and miRNAs in the four human CRC cell lines (LoVo, SW480, HT29 and Caco-2) with different potential of metastasis. Expression patterns of mRNAs and miRNAs were altered in different CRC cell lines. By developing an integrated bioinformatics analysis of gene and miRNA expression patterns, hsa-let-7i was identified to show the highest degree in the microRNA-GO-network and microRNA-Gene-network. The expression level of hsa-let-7i was further validated by qRT-PCR in CRC cells. In addition, the targets of hsa-let-7i were predicted by two programs TargetScan and PicTar, and target genes were validated by expression profiling in the most epresentative LoVo and Caco-2 cell lines. Eight genes including TRIM41, SOX13, SLC25A4, SEMA4F, RPUSD2, PLEKHG6, CCND2, and BTBD3 were identified as hsa-let-7i targets. Our data showed the power of comprehensive gene and miRNA expression profiling and the application of bioinformatics tools in the identification of novel biomarkers in CRC metastasis.  相似文献   
993.
Studying rhizobia in the root nodules of Sphaerophysa salsula (Pall.) DC in the northwest of China, we obtained five strains classified as genus Rhizobium on the basis of their 16S rRNA gene sequences. The sequence similarity of strain CCNWQTX14T with the most related species was 99.0%. Further phylogenetic analysis of housekeeping genes (recA and atpD) suggested the five strains comprised a novel lineage within Rhizobium. The nifH and nodD gene sequences of CCNWQTX14T were phylogenetically closely related with those of Sinorhizobium kummerowiae and R. sphaerophysae, respectively. The five strains isolated from different places were also distinct from related Rhizobium species using ERIC fingerprint profiles. The DNA–DNA hybridization value was 41.8% between CCNWQTX14T and Rhizobium sphaerophysae CCNWGS0238T. Our novel strains were only able to form effective nodules on its original host Sphaerophysa salsula. Our data showed that the five Rhizobium strains formed a unique genomic species, for which a novel species Rhizobium helanshanense sp. nov. is proposed. The type strain is CCNWQTX14T (=ACCC 16237T =HAMBI 3083T).  相似文献   
994.
Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases—regardless of their different specific functions—use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions.  相似文献   
995.
996.
997.
Alzheimer??s disease is a neurodegenerative disease characterized by the production of ??-amyloid proteins and hyperphosphorylation of tau protein. Inflammation and apoptotic severity were highly correlated with earlier age at onset of Alzheimer??s disease and were also associated with cognitive decline. This study aims to examine whether the traditional Chinese medicine ginsennoside Rd could prevent cognitive deficit and take neuroprotective effects in ??-amyloid peptide 1?C40-induced rat model of Alzheimer??s disease. To produce Alzheimer??s disease animal model, aggregated ??-amyloid peptide 1?C40 injected into hippocampus bilaterally. Ginsennoside Rd protected their cognitive impairment and improved their memory function by daily intraperitoneal injection for 30?days consecutively. In addition, ginsennoside Rd alleviated the inflammation induced by ??-amyloid peptide 1?C40. Furthermore, ginsennoside Rd played a role in the down-regulation of caspase-3 proteins and reduced the apoptosis that normally followed ??-amyloid peptide 1?C40 injection. The results of this study showed that the pretreatment of ginsennoside Rd had neuroprotective effects in ??-amyloid peptide 1?C40-induced AD model rat.  相似文献   
998.
999.
1000.
Fan Y  Shi Y  Liu S  Mao R  An L  Zhao Y  Zhang H  Zhang F  Xu G  Qin J  Yang J 《Cellular signalling》2012,24(7):1381-1389
Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular processes. TAK1, a member of the MAPKKK family, is essential for TNFα-induced NF-κB activation. Phosphorylation and Lys(63)-linked polyubiquitination (polyUb) of TAK1 are critical for its activation. However, whether TAK1 is regulated by polyubiquitination-mediated protein degradation after its activation remains unknown. Here we report that TNFα induces TAK1 Lys(48) linked polyubiquitination and degradation at the later time course. Furthermore, we provide direct evidence that TAK1 is modified by Lys(48)-linked polyubiquitination at lysine-72 by mass spectrometry. A K72R point mutation on TAK1 abolishes TAK1 Lys(48)-linked polyubiquitination and enhances TAK1/TAB1 co-overexpression-induced NF-κB activation. As expected, TAK1 K72R mutation inhibits TNFα-induced Lys(48)-linked TAK1 polyubiquitination and degradation. TAK1 K72R mutant prolongs TNFα-induced NF-κB activation and enhances TNFα-induced IL-6 gene expression. Our findings demonstrate that TNFα induces Lys(48)-linked polyubiquitination of TAK1 at lysine-72 and this polyubiquitination-mediated TAK1 degradation plays a critical role in the downregulation of TNFα-induced NF-κB activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号