首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7302篇
  免费   783篇
  国内免费   937篇
  2024年   21篇
  2023年   112篇
  2022年   280篇
  2021年   448篇
  2020年   338篇
  2019年   406篇
  2018年   369篇
  2017年   296篇
  2016年   397篇
  2015年   562篇
  2014年   652篇
  2013年   624篇
  2012年   712篇
  2011年   589篇
  2010年   400篇
  2009年   342篇
  2008年   331篇
  2007年   245篇
  2006年   227篇
  2005年   203篇
  2004年   200篇
  2003年   172篇
  2002年   163篇
  2001年   91篇
  2000年   80篇
  1999年   78篇
  1998年   45篇
  1997年   43篇
  1996年   26篇
  1995年   31篇
  1994年   33篇
  1993年   28篇
  1992年   57篇
  1991年   44篇
  1990年   45篇
  1989年   43篇
  1988年   27篇
  1987年   31篇
  1986年   28篇
  1985年   26篇
  1984年   24篇
  1983年   20篇
  1982年   11篇
  1980年   14篇
  1979年   8篇
  1977年   9篇
  1972年   11篇
  1971年   9篇
  1970年   9篇
  1969年   9篇
排序方式: 共有9022条查询结果,搜索用时 15 毫秒
101.
102.
随着世界经济的高速发展和人口的不断增长,能源短缺和环境污染问题日益成为制约发展的瓶颈。微生物燃料电池(microbial fuel cell,MFC)能将污染物中蕴含的化学能直接转化为电能,实现同步污水处理和电能回收,是一种极具前景的可持续污水处理技术。同时,MFC在污泥处理、生物修复、环境监测、海水淡化等方面也展示了诱人的前景。基于科睿唯安Web of Science数据库和德温特专利检索分析平台(Derwent Innovation, DI),对MFC领域1990~2018年的论文和专利数据进行统计分析,得出全球MFC领域的发展趋势、国际分布、研发热点和技术格局。在此基础上,对未来MFC领域的发展做出了展望,对中国MFC产业化发展提出了思考和建议。  相似文献   
103.
Rice is a major source of cadmium(Cd) intake for Asian people. Indica rice usually accumulates more Cd in shoots and grains than Japonica rice. However, underlying genetic bases for differential Cd accumulation between Indica and Japonica rice are still unknown. In this study, we cloned a quantitative trait locus(QTL) grain Cd concentration on chromosome 7(GCC7) responsible for differential grain Cd accumulation between two rice varieties by performing QTL analysis and map-based cloning. We found that the two GCC7 alleles, GCC7~(PA64s) and GCC7~(93-11), had different promoter activity of OsHMA3,leading to different OsHMA3 expression and different shoot and grain Cd concentrations. By analyzing the distribution of different haplotypes of GCC7 among diverse rice accessions, we discovered that the high and low Cd accumulation alleles, namely GCC7~(93-11) and GCC7~(PA64s), were preferentially distributed in Indica and Japonica rice,respectively. We further showed that the GCC7~(PA64s)allele can be used to replace the GCC7~(93-11) allele in the super cultivar 93-11 to reduce grain Cd concentration without adverse effect on agronomic traits. Our results thus reveal that the QTL GCC7 with sequence variation in the OsHMA3 promoter is an important determinant controlling differential grain Cd accumulation between Indica and Japonica rice.  相似文献   
104.
Flowering time and plant height are key agronomic traits that directly affect soybean (Glycine max) yield. APETALA1 (AP1) functions as a class A gene in the ABCE model for floral organ development, helping to specify carpel, stamen, petal, and sepal identities. There are four AP1 homologs in soybean, all of which are mainly expressed in the shoot apex. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR) – CRISPR‐associated protein 9 technology to generate a homozygous quadruple mutant, gmap1, with loss‐of‐function mutations in all four GmAP1 genes. Under short‐day (SD) conditions, the gmap1 quadruple mutant exhibited delayed flowering, changes in flower morphology, and increased node number and internode length, resulting in plants that were taller than the wild type. Conversely, overexpression of GmAP1a resulted in early flowering and reduced plant height compared to the wild type under SD conditions. The gmap1 mutant and the overexpression lines also exhibited altered expression of several genes related to flowering and gibberellic acid metabolism, thereby providing insight into the role of GmAP1 in the regulatory networks controlling flowering time and plant height in soybean. Increased node number is the trait with the most promise for enhancing soybean pod number and grain yield. Therefore, the mutant alleles of the four AP1 homologs described here will be invaluable for molecular breeding of improved soybean yield.  相似文献   
105.
Tang  Chao  Niu  Qingshan  He  Yuanhao  Zhu  Huaxin  Wang  Ben-Xin 《Plasmonics (Norwell, Mass.)》2020,15(2):467-473

Tunable triple-peaks with the transmission intensity of more than 90% plasmonically induced transparency metamaterial resonator based on nested double π-shaped metallic structure is proposed at the terahertz frequency region, which is consisted of three sets of gold nanorods with different sizes placed on a dielectric substrate of SiO2. The coupling effect of localized electric field between different parts of the proposed structure can be used to explain the physical mechanism of three transparent windows. The finite-difference time-domain (FDTD) is used to study the spectral properties of the proposed structure, and the influence of the size of the nanorods and the relative distance between them on the spectral characteristics are also discussed. It can be seen that some obvious shift phenomena occur in the spectra with the change of these nanorods. These results indicate that the proposed structure opens up new avenues in many related applications, especially for multi-channel filters, optical switches, and sensors.

  相似文献   
106.
107.
Psoralea corylifolia (P corylifolia) has been popularly applied in traditional Chinese medicine decoction for treating osteoporosis and promoting fracture healing since centuries ago. However, the bioactive natural components remain unknown. In this study, applying comprehensive two‐dimensional cell membrane chromatographic/C18 column/time‐of‐flight mass spectrometry (2D CMC/C18 column/TOFMS) system, neobavaisoflavone (NBIF), for the first time, was identified for the bioaffinity with RAW 264.7 cells membranes from the extracts of P corylifolia. Here, we revealed that NBIF inhibited RANKL‐mediated osteoclastogenesis in bone marrow monocytes (BMMCs) and RAW264.7 cells dose dependently at the early stage. Moreover, NBIF inhibited osteoclasts function demonstrated by actin ring formation assay and pit‐formation assay. With regard to the underlying molecular mechanism, co‐immunoprecipitation showed that both the interactions of RANK with TRAF6 and with c‐Src were disrupted. In addition, NBIF inhibited the phosphorylation of P50, P65, IκB in NF‐κB pathway, ERK, JNK, P38 in MAPKs pathway, AKT in Akt pathway, accompanied with a blockade of calcium oscillation and inactivation of nuclear translocation of nuclear factor of activated T cells cytoplasmic 1 (NFATc1). In vivo, NBIF inhibited osteoclastogenesis, promoted osteogenesis and ameliorated bone loss in ovariectomized mice. In summary, P corylifolia‐derived NBIF inhibited RANKL‐mediated osteoclastogenesis by suppressing the recruitment of TRAF6 and c‐Src to RANK, inactivating NF‐κB, MAPKs, and Akt signalling pathways and inhibiting calcium oscillation and NFATc1 translocation. NBIF might serve as a promising candidate for the treatment of osteoclast‐associated osteopenic diseases.  相似文献   
108.
Osteolytic skeletal disorders are caused by an imbalance in the osteoclast and osteoblast function. Suppressing the differentiation and resorptive function of osteoclast is a key strategy for treating osteolytic diseases. Dracorhodin perchlorate (D.P), an active component from dragon blood resin, has been used for facilitating wound healing and anti-cancer treatments. In this study, we determined the effect of D.P on osteoclast differentiation and function. We have found that D.P inhibited RANKL-induced osteoclast formation and resorbed pits of hydroxyapatite-coated plate in a dose-dependent manner. D.P also disrupted the formation of intact actin-rich podosome structures in mature osteoclasts and inhibited osteoclast-specific gene and protein expressions. Further, D.P was able to suppress RANKL-activated JNK, NF-κB and Ca2+ signalling pathways and reduces the expression level of NFATc1 as well as the nucleus translocation of NFATc1. Overall, these results indicated a potential therapeutic effect of D.P on osteoclast-related conditions.  相似文献   
109.
Half‐Heusler (HH) compounds have shown great potential in waste heat recovery. Among them, p‐type NbFeSb and n‐type ZrNiSn based alloys have exhibited the best thermoelectric (TE) performance. However, TE devices based on NbFeSb‐based HH compounds are rarely studied. In this work, bulk volumes of p‐type (Nb0.8Ta0.2)0.8Ti0.2FeSb and n‐type Hf0.5Zr0.5NiSn0.98Sb0.02 compounds are successfully prepared with good phase purity, compositional homogeneity, and matchable TE performance. The peak zTs are higher than 1.0 at 973 K for Hf0.5Zr0.5NiSn0.98Sb0.02 and at 1200 K for (Nb0.8Ta0.2)0.8Ti0.2FeSb. Based on an optimal design by a full‐parameters 3D finite element model, a single stage TE module with 8 n‐p HH couples is assembled. A high conversion efficiency of 8.3% and high power density of 2.11 W cm?2 are obtained when hot and cold side temperatures are 997 and 342 K, respectively. Compared to the previous TE module assembled by the same materials, the conversion efficiency is enhanced by 33%, while the power density is almost the same. Given the excellent mechanical robustness and thermal stability, matchable thermal expansion coefficient and TE properties of NbFeSb and ZrNiSn based HH alloys, this work demonstrates their great promise for power generation with both high conversion efficiency and high power density.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号