全文获取类型
收费全文 | 16420篇 |
免费 | 1681篇 |
国内免费 | 1564篇 |
专业分类
19665篇 |
出版年
2024年 | 134篇 |
2023年 | 251篇 |
2022年 | 585篇 |
2021年 | 924篇 |
2020年 | 673篇 |
2019年 | 772篇 |
2018年 | 785篇 |
2017年 | 573篇 |
2016年 | 789篇 |
2015年 | 1134篇 |
2014年 | 1290篇 |
2013年 | 1257篇 |
2012年 | 1535篇 |
2011年 | 1351篇 |
2010年 | 822篇 |
2009年 | 713篇 |
2008年 | 790篇 |
2007年 | 609篇 |
2006年 | 569篇 |
2005年 | 497篇 |
2004年 | 432篇 |
2003年 | 350篇 |
2002年 | 338篇 |
2001年 | 269篇 |
2000年 | 230篇 |
1999年 | 244篇 |
1998年 | 112篇 |
1997年 | 123篇 |
1996年 | 96篇 |
1995年 | 120篇 |
1994年 | 115篇 |
1993年 | 85篇 |
1992年 | 144篇 |
1991年 | 120篇 |
1990年 | 113篇 |
1989年 | 86篇 |
1988年 | 78篇 |
1987年 | 66篇 |
1986年 | 69篇 |
1985年 | 77篇 |
1984年 | 51篇 |
1983年 | 34篇 |
1982年 | 31篇 |
1981年 | 19篇 |
1980年 | 18篇 |
1979年 | 19篇 |
1978年 | 21篇 |
1977年 | 19篇 |
1974年 | 15篇 |
1972年 | 16篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
Negative pressure wound therapy promotes muscle‐derived stem cell osteogenic differentiation through MAPK pathway 下载免费PDF全文
Hong Liu Xun Zheng Liang Chen Chao Jian Xiang Hu Yong Zhao Zonghuan Li Aixi Yu 《Journal of cellular and molecular medicine》2018,22(1):511-520
Negative pressure wound therapy (NPWT) has been revealed to be effective in the treatment of open fractures, although the underlying mechanism is not clear. This article aimed to investigate the effects of NPWT on muscle‐derived stem cell (MDSC) osteoblastic differentiation and the related potential mechanism. The cell proliferation rate was substantially increased in NPWT‐treated MDSCs in comparison with a static group for 3 days. There was no observable effect on the apoptosis of MDSC treated with NPWT compared with the control group for 3 days. The expression levels of HIF‐1α, BMP‐2, COL‐I, OST and OPN were increased on days 3, 7 and 14, but the expression level of Runx2 was increased on days 3 and 7 in the NPWT group. Pre‐treatment, the specific inhibitors were added into the MDSCs treated with NPWT and the control group. ALP activity and mineralization were reduced by inhibiting the ERK1/2, p38 and JNK pathways. The expression levels of Runx2, COL‐I, OST and OPN genes and proteins were also decreased using the specific MAPK pathway inhibitors on days 3, 7 and 14. There were no significant effects on the expression of BMP‐2 except on day 3. However, the expressions of the HIF‐1α gene and protein slightly increased when the JNK pathway was inhibited. Therefore, NPWT promotes the proliferation and osteogenic differentiation of MDSCs through the MAPK pathway. 相似文献
82.
贵州北盘江喀斯特地区车桑子造林对乡土植物物种多样性的影响 总被引:1,自引:0,他引:1
为明确车桑子(Dodonaea viscosa)造林对北盘江喀斯特地区乡土植物物种多样性的影响,该研究采用群落样地调查法对不同车桑子覆盖度(0、20%、40%、60%、80%、100%)下的植物群落进行实地调查,并对其植物群落的物种多样性进行了对比分析。结果表明:(1)随车桑子覆盖度的增加,群落物种数及高位芽物种数有所下降,留下的物种多为地面芽、隐芽和一年生的草本植物。(2)随车桑子覆盖度的增加,Margalef指数、Simpson指数、Shan-non-Wiener指数及Pielou指数均呈下降趋势,群落中植物的种类和数量均减少,群落结构趋于简单,稳定性降低。(3)随车桑子覆盖度的增加,群落的物种组成不断发生替换,且草本植物的物种替代率均大于木本植物,但群落中物种间替代率呈先降低后升高的趋势,相邻两覆盖度之间的物种相似性系数呈先增加后减小的趋势。研究认为,当车桑子覆盖度≥60%后,乡土植物物种丰富度、多样性相对较低,物种分配不均匀,群落结构变简单,稳定性较差,不利于群落向更高级的演替阶段发展。 相似文献
83.
Ji-Ming Pan Long-Guo Wu Jing-Wei Cai Li-Ting Wu 《Journal of receptor and signal transduction research》2019,39(1):80-86
The hypofunction of osteoblasts induced by glucocorticoids (GCs) has been identified as a major contributing factor for GC-induced osteoporosis (GIO). However, the biological mechanism underlying the effect of GC in osteoblasts are not fully elucidated. Recent studies implicated an important role of phosphoinositide 3-kinase (PI3K)/protein kinase B(Akt) signaling pathway in the regulation of bone growth. We propose that the PI3K/Akt signaling may be implicated in the process of GC-induced osteogenic inhibition in osteoblasts. In this study, primary osteoblasts were used in vitro and in rats in vivo to evaluate the biological significance of the PI3K/Akt pathway in GC-induced bone loss. In vivo, dexamethasone (Dex)-treated rats had low bone mineral density and decreased expression levels of alkaline phosphatase (ALP), osteocalcin (OCN), and phosphorylated Akt (p-Akt) in bone tissue. In vitro study shows that Dex over the dose of 10–8 M remarkably inhibited cellular osteogenesis, as represented by decreased cell viability, lessened ALP activity, and suppressed osteogenic protein expressions including ALP and OCN. Meanwhile, a dramatic downregulation in the PI3K/Akt pathway phosphorylation was also observed in Dex-treated osteoblasts. These changes were marked rescued by treatment with a PI3K agonist 740Y-P. Moreover, downregulation of ALP and OCN expressions by LY294002 can mimic the suppressive effects of Dex. These data together reveal that the suppressed PI3K/Akt pathway is involved in the regulatory action of Dex on osteogenesis. 相似文献
84.
85.
86.
Jiaomeng Pan Zhen Xiang Qingqiang Dai Zhenqiang Wang Bingya Liu Chen Li 《Journal of cellular biochemistry》2019,120(8):13478-13486
Lack of guidelines for personalized chemotherapy treatment after surgery has caused gastric cancer (GC) patients' unnecessary exposure to toxicity and the financial burden of chemotherapy treatments. In our study, we aimed to identify potential biomarkers to predict GC patients' susceptibility to platinum-based on Gene Expression Omnibus (GEO) data sets. A total of 603 differentially expressed genes (DEGs) were identified between platinum-resistant cell lines and platinum-sensitive cell lines based on the Cancer Cell Line Encyclopedia (CCLE) data sets. A total of 253 patients who had accepted radical gastrectomy were recruited, of which 97 received platinum-based chemotherapy and 156 were untreated. Three biomarkers (BRMS1, ND6, SRXN1) were then selected by univariate and multivariate Cox regression analysis to establish the predictive models using nomogram. Then this model was further validated through the GEO data set (GSE62254) which showed that this model could precisely predict the disease-free survival and overall survival of patients treated with platinum-based chemotherapy after surgery compared with untreated GC patients (P < 0.0001). This predictive model might provide helpful messages about the patients' susceptibility to platinum to guide personalized chemotherapy. 相似文献
87.
88.
Chao Zhong Suli Sun Yinping Li Canxing Duan Zhendong Zhu 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(3):525-538
Key message
A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS–LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed.Abstract
Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites–leucine-rich repeat (NBS–LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.89.
Yang D Pan Z Takeshima H Wu C Nagaraj RY Ma J Cheng H 《The Journal of biological chemistry》2001,276(43):40210-40214
The neonatal mammalian skeletal muscle contains both type 1 and type 3 ryanodine receptors (RyR1 and RyR3) located in the sarcoplasmic reticulum membrane. An allosteric interaction between RyR1 and dihydropyridine receptors located in the plasma membrane mediates voltage-induced Ca(2+) release (VICR) from the sarcoplasmic reticulum. RyR3, which disappears in adult muscle, is not involved in VICR, and the role of the transiently expressed RyR3 remains elusive. Here we demonstrate that RyR1 participates in both VICR and Ca(2+)-induced Ca(2+) release (CICR) and that RyR3 amplifies RyR1-mediated CICR in neonatal skeletal muscle. Confocal measurements of intracellular Ca(2+) in primary cultured mouse skeletal myotubes reveal active sites of Ca(2+) release caused by peripheral coupling between dihydropyridine receptors and RyR1. In myotubes lacking RyR3, the peripheral VICR component is unaffected, and RyR1s alone are able to support inward CICR propagation in most cells at an average speed of approximately 190 microm/s. With the co-presence of RyR1 and RyR3 in wild-type cells, unmitigated radial CICR propagates at 2,440 microm/s. Because neonatal skeletal muscle lacks a well developed transverse tubule system, the RyR3 reinforcement of CICR seems to ensure a robust, uniform, and synchronous activation of Ca(2+) release throughout the cell body. Such functional interplay between RyR1 and RyR3 can serve important roles in Ca(2+) signaling of cell differentiation and muscle contraction. 相似文献
90.
Wei Feng Chao Zhang Tingting Yu Oxana Semyachkina‐Glushkovskaya Dan Zhu 《Journal of biophotonics》2019,12(4)
The blood‐brain barrier (BBB) plays a key role in the health of the central nervous system. Opening the BBB is very important for drug delivery to brain tissues to enhance the therapeutic effect on brain diseases. It is necessary to in vivo monitor the BBB permeability for assessing drug release with high resolution; however, an effective method is lacking. In this work, we developed a new method that combined spectral imaging with an optical clearing skull window to in vivo dynamically monitor BBB opening caused by 5‐aminolevulinic acid (5‐ALA)‐mediated photodynamic therapy (PDT), in which the Evans blue dye (EBd) acted as an indicator of the BBB permeability. Using this method, we effectively monitored the cerebrovascular EBd leakage process. Moreover, the analysis of changes in the vascular and extravascular EBd concentrations demonstrated that the PDT‐induced BBB opening exhibited spatiotemporal differences in the cortex. This spectral imaging method based on the optical clearing skull window provides a low‐cost and simply operated tool for in vivo monitoring BBB opening process. This has a high potential for the visualization of drug delivery to the central nervous system. Thus, it is of tremendous significance in brain disease therapy. Monitoring the changes in PDT‐induced BBB permeability by evaluating the EBd concentration using an optical clearing skull window. (A) Entire brains and coronal sections following treatment of PDT with/without an optical clearing skull window after injection of EBd. (B) Typical EBd distribution maps before and after laser irradiation captured by the spectral imaging method. (Colorbar represents the EBd concentration). 相似文献