首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28205篇
  免费   2362篇
  国内免费   2472篇
  33039篇
  2024年   84篇
  2023年   368篇
  2022年   933篇
  2021年   1572篇
  2020年   1076篇
  2019年   1313篇
  2018年   1246篇
  2017年   940篇
  2016年   1314篇
  2015年   1806篇
  2014年   2166篇
  2013年   2291篇
  2012年   2552篇
  2011年   2314篇
  2010年   1452篇
  2009年   1303篇
  2008年   1445篇
  2007年   1235篇
  2006年   1074篇
  2005年   934篇
  2004年   760篇
  2003年   711篇
  2002年   603篇
  2001年   412篇
  2000年   402篇
  1999年   401篇
  1998年   225篇
  1997年   210篇
  1996年   203篇
  1995年   205篇
  1994年   187篇
  1993年   143篇
  1992年   214篇
  1991年   156篇
  1990年   155篇
  1989年   119篇
  1988年   79篇
  1987年   77篇
  1986年   62篇
  1985年   59篇
  1984年   41篇
  1983年   32篇
  1982年   26篇
  1981年   15篇
  1980年   18篇
  1979年   10篇
  1972年   11篇
  1971年   9篇
  1970年   9篇
  1969年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
The Flapping Rotary Wing(FRW)is a micro air vehicle wing layout coupling flapping,pitching,and rotating motions.It can gain bencfits in high lift from a fast passive rotating motion,which is tightly related to the passive pitching motion directly caused by wing flexible deformation.Therefore,flexible deformation is crucial for the wing kinematics and aerodynamic performance of an FRW.In this paper,we explored the effct of flexibility on wing kinematics and acrodynamics on the basis of a mechanical FRW model.A photogrammetric method was adopted to capture motion images according to which wing orientations and deformations were reconstructed.Corresponding acrodynamic force was computed using computational fluid dynamic method,and wing kinematics and deformations were used as simulation inputs.The experimental measurements presented the real orientation and deformation pattem of a real FRW.The wing passive deformation of a high-intensity FRW was found to be mainly caused by inertial force,and a linear positive spanwise twist was observed in the FRW.The effects of wing deformation on aerodynamic force production and the underlying mechanism were addressed.Results showed that lift augment,rotating moment enhancement,and power efficiency improvement can be achieved when a wing becomes flexible.Wing spanwise twist mainly accounts for these changes in aerodynamics,and increment in spanwise twist could further contributes to aerodynamic improvement.  相似文献   
952.
953.
ObjectiveBlood blister–like aneurysms (BBAs) are extremely rare aneurysms. They are predisposed to preoperative rerupture with a high case‐fatality rate. Here, we attempt to interrogate the distinct clinicopathology and the histological basis underlying its clinical rerupture.MethodsThree middle meningeal arteries, 11 BBA (5 reruptured, 6 non‐rerupture) and 19 saccular aneurysm samples were obtained for histopathological investigation. Three reruptured BBAs, 3 non‐reruptured BBAs and 6 saccular (3 ruptured, 3 unruptured) aneurysms were obtained for quantitative flow cytometry analysis.ResultsCompared with true saccular aneurysms, the BBA aneurysm wall lacks arterial stroma cells including CD31+ endothelial cells and α‐SMA + smooth muscle cells. Only fibroblasts and adventitial collagen were observed in the BBA aneurysm wall. Meanwhile, BBAs were enriched with infiltrated inflammatory cells, especially polarized macrophages. Based on the rerupture status, those reruptured BBAs showed drastically reduced fibroblasts and adventitia collagen. Moreover, M2‐polarized macrophages were observed dominant in BBAs and exhibit repairing cellular functions based on their interplays with arterial fibroblasts. Reduced M2 macrophages and arterial tissue repairing modulation may be responsible for the decreasing collagen synthesis and fibrosis repairment, which potentially dampens the aneurysm integrity and induces BBA aneurysm reruputre.ConclusionsBBAs poses histopathological features of occult pseudoaneurysms or dissecting aneurysms. Reduced M2 macrophages and adventitia collagen may dampen the structural integrity of BBAs and induce preoperative rerupture.  相似文献   
954.
工业生物技术是利用生化反应和生物体机能进行物质合成加工与能量转化利用的集成技术,正在支撑建立以可发酵糖、秸秆、二氧化碳等可再生资源为原料的化学品绿色高效制造新路线,有望实现工业制造方式的根本转变,是支撑经济社会可持续发展的重大战略技术,已成为世界各国科技和产业竞争的焦点。本文从工业生物技术深度融入和支撑生物经济发展的态势出发,系统分析了我国工业生物技术和生物产业发展的现状、短板问题,提出了未来建议重点发展的主要方向。  相似文献   
955.
956.
The concept of diabetic retinopathy (DR) has been extended from microvascular disease to neurovascular disease in which microglia activation plays a remarkable role. Fractalkine (FKN)/CX3CR1 is reported to regulate microglia activation in central nervous system diseases. To characterize the effect of FKN on microglia activation in DR, we employed streptozotocin‐induced diabetic rats, glyoxal‐treated R28 cells and hypoxia‐treated BV2 cells to mimic diabetic conditions and explored retinal neuronal apoptosis, reactive oxygen species (ROS), as well as the expressions of FKN, Iba‐1, TSPO, NF‐κB, Nrf2 and inflammation‐related cytokines. The results showed that FKN expression declined with diabetes progression and in glyoxal‐treated R28 cells. Compared with normal control, retinal microglia activation and inflammatory factors surged in both diabetic rat retinas and hypoxia‐treated microglia, which was largely dampened by FKN. The NF‐κB and Nrf2 expressions and intracellular ROS were up‐regulated in hypoxia‐treated microglia compared with that in normoxia control, and FKN significantly inhibited NF‐κB activation, activated Nrf2 pathway and decreased intracellular ROS. In conclusion, the results demonstrated that FKN deactivated microglia via inhibiting NF‐κB pathway and activating Nrf2 pathway, thus to reduce the production of inflammation‐related cytokines and ROS, and protect the retina from diabetes insult.  相似文献   
957.
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE).  相似文献   
958.
959.
The lamellar body (LB), a concentric structure loaded with surfactant proteins and phospholipids, is an organelle specific to type 2 alveolar epithelial cells (AT2). However, the origin of LBs has not been fully elucidated. We have previously reported that autophagy regulates Weibel-Palade bodies (WPBs) formation, and here we demonstrated that autophagy is involved in LB maturation, another lysosome-related organelle. We found that during development, LBs were transformed from autophagic vacuoles containing cytoplasmic contents such as glycogen. Fusion between LBs and autophagosomes was observed in wild-type neonate mice. Moreover, the markers of autophagic activity, microtubule-associated protein 1 light chain 3B (LC3B), largely co-localized on the limiting membrane of the LB. Both autophagy-related gene 7 (Atg7) global knockout and conditional Atg7 knockdown in AT2 cells in mice led to defects in LB maturation and surfactant protein B production. Additionally, changes in autophagic activity altered LB formation and surfactant protein B production. Taken together, these results suggest that autophagy plays a critical role in the regulation of LB formation during development and the maintenance of LB homeostasis during adulthood.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号