首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7240篇
  免费   784篇
  国内免费   936篇
  2024年   21篇
  2023年   112篇
  2022年   280篇
  2021年   446篇
  2020年   337篇
  2019年   406篇
  2018年   367篇
  2017年   296篇
  2016年   399篇
  2015年   560篇
  2014年   647篇
  2013年   619篇
  2012年   706篇
  2011年   586篇
  2010年   393篇
  2009年   333篇
  2008年   330篇
  2007年   247篇
  2006年   223篇
  2005年   203篇
  2004年   199篇
  2003年   170篇
  2002年   163篇
  2001年   91篇
  2000年   78篇
  1999年   77篇
  1998年   38篇
  1997年   43篇
  1996年   27篇
  1995年   32篇
  1994年   30篇
  1993年   28篇
  1992年   57篇
  1991年   43篇
  1990年   45篇
  1989年   43篇
  1988年   26篇
  1987年   31篇
  1986年   27篇
  1985年   24篇
  1984年   24篇
  1983年   17篇
  1982年   11篇
  1981年   9篇
  1980年   14篇
  1977年   12篇
  1972年   11篇
  1971年   9篇
  1970年   9篇
  1969年   9篇
排序方式: 共有8960条查询结果,搜索用时 125 毫秒
211.
In a survey of rhizobia associated with the native legumes in Yunnan Province, China, seven and nine strains isolated from the root nodules of Psoralea corylifolia, Sesbania cannabina and Medicago lupulina were respectively classified into the novel genomic species groups I and II in the genus Ensifer (former Sinorhizobium) based on the sequence analyses of the 16S rRNA gene. Analyses of concatenated housekeeping genes (atpD, recA and glnII) further revealed that they were distinct lineages in the genus, and group I was most similar to Ensifer terangae and Ensifer garamanticus (both with 94.2% similarity), while group II was most similar to Ensifer adhaerens (94.0%). These groups could be distinguished from closely related species by DNA–DNA relatedness, MALID-TOF MS, cellular fatty acid profiles and a series of phenotypic characters. Therefore, two novel species were proposed: Ensifer psoraleae sp. nov. (seven strains, type strain CCBAU 65732T = LMG 26835T = HAMBI 3286T) and Ensifer sesbaniae sp. nov. (nine strains, type strain CCBAU 65729T = LMG 26833T = HAMBI 3287T). They had a DNA G + C mol% (Tm) of 58.9 and 60.4, respectively. Both of the type strains formed effective nodules on common bean (Phaseolus vulgaris) and their hosts of origin. In addition, the previously described species Sinorhizobium morelense and Sinorhizobium americanum were renamed as Ensifer morelense comb. nov. and Ensifer americanum comb. nov. according to the accumulated data from different studies.  相似文献   
212.
213.
We examined the potential differences in tolerance to hypoxia by two species of apple rootstocks. Stomatal behavior and photosynthesis were compared between Malus sieversii and Malus hupehensis. Plants were hydroponically grown for 15 days in normoxic or hypoxic nutrient solutions. Those of M. sieversii showed much greater sensitivity, with exposure to hypoxia resulting in higher leaf concentrations of abscisic acid (ABA) that prompted stomatal closure. Compared with the control plants of that species, stomatal density was greater in both new and mature leaves under stress conditions. In contrast, stomatal density was significantly decreased in leaves from M. hupehensis, while stomatal length was unaffected. Under stress, the net photosynthetic rate, stomatal conductance and chlorophyll contents were markedly reduced in M. sieversii. The relatively hypoxia‐tolerant genotype M. hupehensis, however, showed only minor changes in net photosynthesis or chlorophyll content, and only a slight decrease in stomatal conductance due to such treatment. Therefore, we conclude that the more tolerant M. hupehensis utilizes a better protective mechanism for retaining higher photosynthetic capacity than does the hypoxia‐sensitive M. sieversii. Moreover, this contrast in tolerance and adaptation to stress is linked to differences in their stomatal behavior, photosynthetic capacity and possibly their patterns of native distribution.  相似文献   
214.

Background and Aims

Evidence shows that plants modify their microbial environment leading to the “crop rotation effect”, but little is known about the changes in rhizobacterial community structure and functionality associated with beneficial rotation effects.

Methods

Polymerase chain reaction (PCR) and 454 GS FLX amplicon pyrosequencing were used to describe the composition of the rhizobacterial community evolving under the influence of pea, a growth promoting rotation crop, and the influence of three genotypes of chickpea, a plant known as an inferior rotation crop. The growth promoting properties of these rhizobacterial communities were tested on wheat in greenhouse assays.

Results

The rhizobacterial communities selected by pea and the chickpea CDC Luna in 2008, a wet year, promoted durum wheat growth, but those selected by CDC Vanguard or CDC Frontier had no growth-promoting effect. In 2009, a dry year, the influence of plants was mitigated, indicated that moisture availability is a major driver of soil bacterial community dynamics.

Conclusion

The effect of pulse crops on soil biological quality varies with the crop species and genotypes, and certain chickpea genotypes may induce positive rotation effects on wheat. The strength of a rotation effect on soil biological quality is modulated by the abundance of precipitation.  相似文献   
215.
216.
The cold springs underlain by gas hydrates on the Qinghai-Tibet Plateau (QTP) are similar to deep-sea cold seeps with respect to methane biogeochemistry. Previous studies have shown that ammonia oxidizing bacteria (AOB) and archaea (AOA) are actively present and play important roles in the carbon/nitrogen cycles in cold seeps. Studying AOA and AOB communities in the QTP cold springs will be of great importance to our understanding of carbon and nitrogen cycling dynamics related to the underlying gas hydrates on the QTP. Thus, the abundance and diversity of AOB and AOA in sediments of four cold springs underlain by gas hydrates on the QTP were determined by using quantitative polymerase chain reaction and amoA gene (encoding ammonia monooxygenase involved in ammonia oxidation) phylogenetic analysis. The results showed that the AOB and AOA amoA gene abundances were at 103–104 copies per gram of the sediments in the investigated cold springs. The AOB population consisted of Nitrosospira and Nitrosomonas in contrast with the mere presence of Nitrosospira in marine cold seeps. The AOB diversity was higher in cold springs than in cold seeps. The AOA population was mainly composed of Nitrososphaera, in contrast with the dominance of Nitrosopumilus in cold seeps. The terrestrial origin and high level of dissolved oxygen of the cold springs may be the main factors accounting for the observed differences in AOB and AOA populations between the QTP cold springs and marine cold seeps.  相似文献   
217.
Predicting membrane protein type is a meaningful task because this kind of information is very useful to explain the function of membrane proteins. Due to the explosion of new protein sequences discovered, it is highly desired to develop efficient computation tools for quickly and accurately predicting the membrane type for a given protein sequence. Even though several membrane predictors have been developed, they can only deal with the membrane proteins which belong to the single membrane type. The fact is that there are membrane proteins belonging to two or more than two types. To solve this problem, a system for predicting membrane protein sequences with single or multiple types is proposed. Pseudo–amino acid composition, which has proven to be a very efficient tool in representing protein sequences, and a multilabel KNN algorithm are used to compose this prediction engine. The results of this initial study are encouraging.  相似文献   
218.
219.
Cullin-RING ubiquitin ligases (CRLs) are the largest family of E3 ligases and require cullin neddylation for their activation. The NEDD8-activating enzyme inhibitor MLN4924 reportedly blocked cullin neddylation and inactivated CRLs, which resulted in apoptosis induction and tumor suppression. However, CRL roles in ovarian cancer cell survival and the ovarian tumor repressing effects of MLN4924 are unknown. We show here that CRL4 components are highly expressed in human epithelial ovarian cancer tissues. MLN4924-induced DNA damage, cell cycle arrest, and apoptosis in ovarian cancer cells in a time- and dose-dependent manner. In addition, MLN4924 sensitized ovarian cancer cells to other chemotherapeutic drug treatments. Depletion of CRL4 components Roc1/2, Cul4a, and DDB1 had inhibitory effects on ovarian cancer cells similar to MLN4924 treatment, which suggested that CRL4 inhibition contributed to the chemotherapeutic effect of MLN4924 in ovarian cancers. We also investigated for key CRL4 substrate adaptors required for ovarian cancer cells. Depleting Vprbp/Dcaf1 did not significantly affect ovarian cancer cell growth, even though it was expressed by ovarian cancer tissues. However, depleting Cdt2/Dcaf2 mimicked the pharmacological effects of MLN4924 and caused the accumulation of its substrate, CDT1, both in vitro and in vivo. MLN4924-induced DNA damage and apoptosis were partially rescued by Cdt1 depletion, suggesting that CRL4CDT2 repression and CDT1 accumulation were key biochemical events contributing to the genotoxic effects of MLN4924 in ovarian cancer cells. Taken together, these results indicate that CRL4CDT2 is a potential drug target in ovarian cancers and that MLN4924 may be an effective anticancer agent for targeted ovarian cancer therapy.  相似文献   
220.
Ferrets have become an indispensable tool in the understanding of influenza virus virulence and pathogenesis. Furthermore, ferrets are the preferred preclinical model for influenza vaccine and therapeutic testing. Here we characterized the influenza infectome during the different stages of the infectious process in ferrets with and without prior specific immunity to influenza. RNA from lung tissue and lymph nodes from infected and naïve animals was subjected to next-generation sequencing, followed by de novo data assembly and annotation of the resulting sequences; this process generated a library comprising 13,202 ferret mRNAs. Gene expression profiles during pandemic H1N1 (pdmH1N1) influenza virus infection were analyzed by digital gene expression and solid support microarrays. As expected during primary infection, innate immune responses were triggered in the lung tissue; meanwhile, in the lymphoid tissue, genes encoding antigen presentation and maturation of effector cells of adaptive immunity increased dramatically. After 5 days postinfection, the innate immune gene expression was replaced by the adaptive immune response, which correlates with viral clearance. Reinfection with homologous pandemic influenza virus resulted in a diminished innate immune response, early adaptive immune gene regulation, and a reduction in clinical severity. The fully annotated ferret infectome will be a critical aid to the understanding of the molecular events that regulate disease severity and host-influenza virus interactions among seasonal, pandemic, and highly pathogenic avian influenzas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号