首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43031篇
  免费   17092篇
  国内免费   2252篇
  62375篇
  2024年   65篇
  2023年   280篇
  2022年   683篇
  2021年   1335篇
  2020年   2794篇
  2019年   4430篇
  2018年   4446篇
  2017年   4610篇
  2016年   4866篇
  2015年   5158篇
  2014年   5023篇
  2013年   5487篇
  2012年   3490篇
  2011年   3014篇
  2010年   3968篇
  2009年   2601篇
  2008年   1643篇
  2007年   1022篇
  2006年   976篇
  2005年   927篇
  2004年   875篇
  2003年   783篇
  2002年   728篇
  2001年   523篇
  2000年   450篇
  1999年   371篇
  1998年   147篇
  1997年   118篇
  1996年   92篇
  1995年   91篇
  1994年   95篇
  1993年   80篇
  1992年   146篇
  1991年   112篇
  1990年   98篇
  1989年   106篇
  1988年   80篇
  1987年   71篇
  1986年   69篇
  1985年   56篇
  1984年   75篇
  1983年   45篇
  1982年   39篇
  1981年   30篇
  1980年   29篇
  1979年   35篇
  1978年   31篇
  1977年   29篇
  1975年   21篇
  1971年   20篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Computational ecology is an emerging interdisciplinary discipline founded mainly on modeling and simulation methods for studying ecological systems. Among the existing modeling formalisms, the individual‐based modeling is particularly well suited for capturing the complex temporal and spatial dynamics as well as the nonlinearities arising in ecosystems, communities, or populations due to individual variability. In addition, being a bottom‐up approach, it is useful for providing new insights on the local mechanisms which are generating some observed global dynamics. Of course, no conclusions about model results could be taken seriously if they are based on a single model execution and they are not analyzed carefully. Therefore, a sound methodology should always be used for underpinning the interpretation of model results. The sensitivity analysis is a methodology for quantitatively assessing the effect of input uncertainty in the simulation output which should be incorporated compulsorily to every work based on in‐silico experimental setup. In this article, we present R/Repast a GNU R package for running and analyzing Repast Simphony models accompanied by two worked examples on how to perform global sensitivity analysis and how to interpret the results.  相似文献   
992.
Optimized hydrolysis of lignocellulosic waste biomass is essential to achieve the liberation of sugars to be used in fermentation process. Ionic liquids (ILs), a new class of solvents, have been tested in the pretreatment of cellulosic materials to improve the subsequent enzymatic hydrolysis of the biomass. Optimized application of ILs on biomass is important to advance the use of this technology. In this research, we investigated the effects of using 1‐butyl‐3‐methylimidazolium acetate ([bmim][Ac]) on the decomposition of soybean hull, an abundant cellulosic industrial waste. Reaction aspects of temperature, incubation time, IL concentration, and solid load were optimized before carrying out the enzymatic hydrolysis of this residue to liberate fermentable glucose. Optimal conditions were found to be 75°C, 165 min incubation time, 57% (mass fraction) of [bmim][Ac], and 12.5% solid loading. Pretreated soybean hull lost its crystallinity, which eased enzymatic hydrolysis, confirmed by Fourier Transform Infrared analysis. The enzymatic hydrolysis of the biomass using an enzyme complex from Penicillium echinulatum liberated 92% of glucose from the cellulose matrix. The hydrolysate was free of any toxic compounds, such as hydroxymethylfurfural and furfural. The obtained hydrolysate was tested for fermentation using Candida shehatae HM 52.2, which was able to convert glucose to ethanol at yields of 0.31. These results suggest the possible use of ILs for the pretreatment of some lignocellulosic waste materials, avoiding the formation of toxic compounds, to be used in second‐generation ethanol production and other fermentation processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:312–320, 2016  相似文献   
993.
The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) [poly(GMA‐co‐EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low‐cost, easy‐to‐prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA‐co‐EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA‐co‐EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43–53, 2016  相似文献   
994.
In this study, step variations in temperature, pH, and carbon substrate feeding rate were performed within five high cell density Escherichia coli fermentations to assess whether intraexperiment step changes, can principally be used to exploit the process operation space in a design of experiment manner. A dynamic process modeling approach was adopted to determine parameter interactions. A bioreactor model was integrated with an artificial neural network that describes biomass and product formation rates as function of varied fed‐batch fermentation conditions for heterologous protein production. A model reliability measure was introduced to assess in which process region the model can be expected to predict process states accurately. It was found that the model could accurately predict process states of multiple fermentations performed at fixed conditions within the determined validity domain. The results suggest that intraexperimental variations of process conditions could be used to reduce the number of experiments by a factor, which in limit would be equivalent to the number of intraexperimental variations per experiment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1343–1352, 2016  相似文献   
995.
Paraeuchaeta hebes is one of the most important carnivorous copepods in the coastal upwelling system off Galician waters (Ría de Vigo, NE Atlantic). A suctorian epibiont of the genus Pelagacineta was found attached to the surface of these copepods. The abundance and distribution on the copepod surface were analysed, taking into account the sex of the crustacean, revealing some preference for females and also a different attachment point in both sexes. The morphological study allowed us to identify a new species of this Suctoria epibiont as Pelagacineta hebensis. Moreover, the 18S rRNA gene was partially sequenced to inspect the phylogenetic position of Pelagacineta hebensis within the subclass Phyllopharyngea. The maximum‐likelihood (ML) tree obtained was consistent with the morphological and with previous molecular studies and showed that P. hebensis belongs to the order Endogenina, as a sister clade of the few taxa sequenced within this order. Including new genetic data to the Endogenina will allow building new hypothesis about the evolution of the most derived clade of suctorians.  相似文献   
996.
The parasphenoid is located in the cranium of many vertebrates. When present, it is always an unpaired, dermal bone. While most basal vertebrates have a parasphenoid, most placental mammals lack this element and have an unpaired, dermal vomer in a similar position (i.e. associated with the same bones) and with a similar function. As such, the parasphenoid and the vomer were considered homologous by some early twentieth century researchers. However, others questioned this homology based on comparisons between mammals and reptiles. Here we investigate the parasphenoid bone across the major vertebrate lineages (amphibians, reptiles, mammals and teleosts) including both developmental and evolutionary aspects, which until now have not been considered together. We find that within all the major vertebrate lineages there are organisms that possess a parasphenoid and a vomer, while the parasphenoid is absent within caecilians and most placental mammals. Based on our assessment and Patterson's conjunction tests, we conclude that the non‐mammalian parasphenoid and the vomer in mammals cannot be considered homologous. Additionally, the parasphenoid is likely homologous between sarcopterygian and actinopterygian lineages. This research attempts to resolve the issue of the parasphenoid homology and highlights where gaps in our knowledge are still present.  相似文献   
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号