首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1828篇
  免费   141篇
  国内免费   2篇
  1971篇
  2023年   5篇
  2022年   18篇
  2021年   33篇
  2020年   9篇
  2019年   29篇
  2018年   46篇
  2017年   32篇
  2016年   51篇
  2015年   87篇
  2014年   78篇
  2013年   119篇
  2012年   143篇
  2011年   120篇
  2010年   83篇
  2009年   75篇
  2008年   95篇
  2007年   133篇
  2006年   111篇
  2005年   104篇
  2004年   113篇
  2003年   110篇
  2002年   91篇
  2001年   9篇
  2000年   10篇
  1999年   24篇
  1998年   34篇
  1997年   28篇
  1996年   13篇
  1995年   18篇
  1994年   17篇
  1993年   15篇
  1992年   7篇
  1991年   14篇
  1990年   13篇
  1989年   7篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   9篇
  1983年   8篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   10篇
  1978年   2篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
  1964年   1篇
排序方式: 共有1971条查询结果,搜索用时 15 毫秒
141.
NPY regulates human endocardial endothelial cell function   总被引:1,自引:0,他引:1  
Growing evidence suggests that endocardial endothelial cells (EECs) may play an important role in the regulation of cardiac function by releasing several cardioactive factors such as endothelin-1 (ET-1), Angiotensin II (Ang II) and nitric oxide (NO). In our laboratory, we demonstrated that similar to ET-1, EECs do possess different types of NPY receptors, specifically Y(1) and Y(2) receptors. Furthermore, activation of these receptors was found to increase the steady-state level of intracellular free Ca(2+) in EECs and the frequency of beating of cardiomyocytes. In addition, NPY was also found to be present in EECs, and an increase of steady-state intracellular free Ca(2+) induced the release of this peptide from these cells. Thus, similar to ET-1, NPY seems to be released from EECs and this peptide seems to regulate excitation-secretion of these cells as well as excitation-contraction coupling of ventricular cardiomyocytes.  相似文献   
142.
The requirement of DAG (diacylglycerol) to recruit PKD (protein kinase D) to the TGN (trans-Golgi network) for the targeting of transport carriers to the cell surface, has led us to a search for new components involved in this regulatory pathway. Previous findings reveal that the heterotrimeric Gbetagamma (GTP-binding protein betagamma subunits) act as PKD activators, leading to fission of transport vesicles at the TGN. We have recently shown that PKCeta (protein kinase Ceta) functions as an intermediate member in the vesicle generating pathway. DAG is capable of activating this kinase at the TGN, and at the same time is able to recruit PKD to this organelle in order to interact with PKCeta, allowing phosphorylation of PKD's activation loop. The most qualified candidates for the production of DAG at the TGN are PI-PLCs (phosphatidylinositol-specific phospholipases C), since some members of this family can be directly activated by Gbetagamma, utilizing PtdIns(4,5)P2 as a substrate, to produce the second messengers DAG and InsP3. In the present study we show that betagamma-dependent Golgi fragmentation, PKD1 activation and TGN to plasma membrane transport were affected by a specific PI-PLC inhibitor, U73122 [1-(6-{[17-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione]. In addition, a recently described PI-PLC activator, m-3M3FBS [2,4,6-trimethyl-N-(m-3-trifluoromethylphenyl)benzenesulfonamide], induced vesiculation of the Golgi apparatus as well as PKD1 phosphorylation at its activation loop. Finally, using siRNA (small interfering RNA) to block several PI-PLCs, we were able to identify PLCbeta3 as the sole member of this family involved in the regulation of the formation of transport carriers at the TGN. In conclusion, we demonstrate that fission of transport carriers at the TGN is dependent on PI-PLCs, specifically PLCbeta3, which is necessary to activate PKCeta and PKD in that Golgi compartment, via DAG production.  相似文献   
143.
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt–Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrPSc) of the host-encoded prion protein (PrPc). 2. This article reviews the current knowledge on PrPc and PrPSc, prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.  相似文献   
144.
The human protozoan parasite Leishmania major has been shown to exhibit several morphological and biochemical features characteristic of a cell death program when differentiating into infectious stages and under a variety of stress conditions. Although some caspase-like peptidase activity has been reported in dying parasites, no caspase gene is present in the genome. However, a single metacaspase gene is present in L. major whose encoded protein harbors the predicted secondary structure and the catalytic dyad histidine/cysteine described for caspases and other metacaspases identified in plants and yeast. The Saccharomyces cerevisiae metacaspase YCA1 has been implicated in the death of aging cells, cells defective in some biological functions, and cells exposed to different environmental stresses. In this study, we describe the functional heterologous complementation of a S. cerevisiae yca1 null mutant with the L. major metacaspase (LmjMCA) in cell death induced by oxidative stress. We show that LmjMCA is involved in yeast cell death, similar to YCA1, and that this function depends on its catalytic activity. LmjMCA was found to be auto-processed as occurs for caspases, however LmjMCA did not exhibit any activity with caspase substrates. In contrast and similarly to Arabidopsis thaliana metacaspases, LmjMCA was active towards substrates with arginine in the P1 position, with the activity being abolished following H147A and C202A catalytic site mutations. These results suggest that metacaspases are members of a family of peptidases with a role in cell death conserved in evolution notwithstanding possible differences in their catalytic activity.  相似文献   
145.
A single-step pathway for the synthesis of the compatible solute glucosylglycerate (GG) is proposed based on the activity of a recombinant glucosylglycerate synthase (Ggs) from Persephonella marina. The corresponding gene encoded a putative glycosyltransferase that was part of an operon-like structure which also contained the genes for glucosyl-3-phosphoglycerate synthase (GpgS) and glucosyl-3-phosphoglycerate phosphatase (GpgP), the enzymes that lead to the synthesis of GG through the formation of glucosyl-3-phosphoglycerate. The putative glucosyltransferase gene was expressed in Escherichia coli, and the recombinant product catalyzed the synthesis of GG in one step from ADP-glucose and d-glycerate, with K(m) values at 70 degrees C of 1.5 and 2.2 mM, respectively. This glucosylglycerate synthase (Ggs) was also able to use GDP- and UDP-glucose as donors to form GG, but the efficiencies were lower. Maximal activity was observed at temperatures between 80 and 85 degrees C, and Mg(2+) or Ca(2+) was required for catalysis. Ggs activity was maximal and remained nearly constant at pH values between 5.5 and pH 8.0, and the half-lives for inactivation were 74 h at 85 degrees C and 8 min at 100 degrees C. This is the first report of an enzyme catalyzing the synthesis of GG in one step and of the existence of two pathways for GG synthesis in the same organism.  相似文献   
146.
The enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum grown on crystalline cellulose as a sole carbon and energy source was explored by two-dimensional electrophoresis. The cellulolytic system of C. cellulolyticum is composed of at least 30 dockerin-containing proteins (designated cellulosomal proteins) and 30 noncellulosomal components. Most of the known cellulosomal proteins, including CipC, Cel48F, Cel8C, Cel9G, Cel9E, Man5K, Cel9M, and Cel5A, were identified by using two-dimensional Western blot analysis with specific antibodies, whereas Cel5N, Cel9J, and Cel44O were identified by using N-terminal sequencing. Unknown enzymes having carboxymethyl cellulase or xylanase activities were detected by zymogram analysis of two-dimensional gels. Some of these enzymes were identified by N-terminal sequencing as homologs of proteins listed in the NCBI database. Using Trap-Dock PCR and DNA walking, seven genes encoding new dockerin-containing proteins were cloned and sequenced. Some of these genes are clustered. Enzymes encoded by these genes belong to glycoside hydrolase families GH2, GH9, GH10, GH26, GH27, and GH59. Except for members of family GH9, which contains only cellulases, the new modular glycoside hydrolases discovered in this work could be involved in the degradation of different hemicellulosic substrates, such as xylan or galactomannan.  相似文献   
147.
148.
In rats, maternal protein restriction reduces nephron endowment and often leads to adult hypertension. Sex differences in these responses have been identified. The molecular and genetic bases of these phenomena can best be identified in a mouse model, but effects of maternal protein restriction on kidney development have not been examined in mice. Therefore, we determined how combined prenatal and postnatal protein restriction in mice affects organ weight, glomerular number and dimensions, and renal expression of angiotensin receptor mRNA, in both male and female offspring. C57/BL6/129sv mice received either a normal (20% wt/wt; NP) or low (9% wt/wt; LP) protein diet during gestation and postnatal life. Offspring were examined at postnatal day 30. Protein restriction retarded growth of the kidney, liver, spleen, heart, and brain. All organs except the brain weighed less in female than male offspring. Protein restriction increased normalized (to body weight) brain weight, with females having relatively heavier brains than males. The effects of protein restriction were not sex dependent, except that normalized liver weight was reduced in males but increased in females. Glomerular volume, but not number, was greater in female than in male mice. Maternal protein restriction reduced nephron endowment similarly in male and female mice. Renal expression of AT(1A) receptor mRNA was approximately sixfold greater in female than male NP mice, but similar in male LP and female LP mice. We conclude that maternal protein restriction reduces nephron endowment in mice. This effect provides a basis for future studies of developmental programming in the mouse.  相似文献   
149.
The metamorphosis of the cinctoblastula of Homoscleromorpha is studied in five species belonging to three genera. The different steps of metamorphosis are similar in all species. The metamorphosis occurs by the invagination and involution of either the anterior epithelium or the posterior epithelium of the larva. During metamorphosis, morphogenetic polymorphism was observed, which has an individual character and does not depend on either external or species specific factors. In the rhagon, the development of the aquiferous system occurs only by epithelial morphogenesis and subsequent differentiation of cells. Mesohylar cells derive from flagellated cells after ingression. The formation of pinacoderm and choanoderm occurs by the differentiation of the larval flagellated epithelium. This is possibly due to the conservation of cell junctions in the external surface of the larval flagellated cells and of the basement membrane in their internal surface. The main difference in homoscleromorph metamorphosis compared with Demospongiae is the persistence of the flagellated epithelium throughout this process and even in the adult since exo- and endopinacoderm remain flagellated. The antero-posterior axis of the larva corresponds to the baso-apical axis of the adult in Homoscleromorpha.  相似文献   
150.
The effects of prenatal protein restriction on adult renal and cardiovascular function have been studied in considerable detail. However, little is known about the effects of life-long protein restriction, a common condition in the developing world. Therefore, we determined in rats the effects of combined pre- and postnatal protein restriction on adult arterial pressure and renal function and responses to increased dietary sodium. Nephron number was also determined. Male Sprague-Dawley rats were born to mothers fed a low [8% (wt/wt), LP] or normal [20% (wt/wt), NP] isocaloric protein diet throughout pregnancy and maintained on these diets after birth. At postnatal day 135, nephron number, mean arterial pressure (MAP), and renal function were determined. A high-NaCl [8.0% (wt/wt), high-salt] diet was fed to a subset of rats from weaning. MAP was less in LP than in NP rats (120 +/- 2 vs. 128 +/- 2 mmHg, P < 0.05) and was not significantly altered by increased salt intake. Nephron number was 31% less in LP than in NP rats (P < 0.001). The volume of individual glomeruli was also less in LP than in NP rats, as were calculated effective renal plasma flow and glomerular filtration rate. Glomerular filtration rate, but not effective renal plasma flow, appeared to be increased by high salt intake, particularly in LP rats. In conclusion, protein restriction induced a severe nephron deficit, but MAP was lower, rather than higher, in protein-restricted than in control rats in adulthood. These findings indicate that the postnatal environment plays a key role in determining the outcomes of developmental programming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号