首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1828篇
  免费   142篇
  国内免费   2篇
  1972篇
  2023年   5篇
  2022年   18篇
  2021年   33篇
  2020年   9篇
  2019年   29篇
  2018年   46篇
  2017年   32篇
  2016年   51篇
  2015年   87篇
  2014年   78篇
  2013年   119篇
  2012年   143篇
  2011年   120篇
  2010年   83篇
  2009年   75篇
  2008年   95篇
  2007年   133篇
  2006年   111篇
  2005年   104篇
  2004年   113篇
  2003年   110篇
  2002年   91篇
  2001年   10篇
  2000年   11篇
  1999年   24篇
  1998年   35篇
  1997年   28篇
  1996年   13篇
  1995年   19篇
  1994年   17篇
  1993年   15篇
  1992年   7篇
  1991年   13篇
  1990年   13篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1984年   9篇
  1983年   8篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   10篇
  1978年   2篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
  1964年   1篇
排序方式: 共有1972条查询结果,搜索用时 0 毫秒
111.
Pyrethrins, the most economically important natural insecticide, comprise a group of six closely related monoterpene esters. The industrial production is based on their extraction from Chrysanthemum cinerariaefolium (Pyrethrum) capitula. The world production of natural pyrethrins still falls short of global market demand stimulating the research in in vitro production as an alternative to conventional cultivation methods. The different biotechnological alternatives such as callus cultures, shoot and root cultures, plant cell suspension cultures, and bioconversion of precursors by means of enzymatic synthesis or genetically engineered microorganisms, as well as the progress achieved in methods for the identification and quantitation of insecticidal compounds have been reviewed. Although technology for plant cell culture exists, industrial applications have, to date, been limited due to both the low economical viability and technological feasibility at large scale. Bioconversion of readily available precursors looks more attractive, but more research is needed before this technology is used for the industrial production of pyrethrins.  相似文献   
112.
This study presents data of in situ measurements of inorganic carbon assimilation by phytoplankton communities of the St Lawrence estuary during the end of summer 1982. We used carboxylase activity measurements (ribulose-1,5-bisphosphate carboxylase, carboxylases) and the 13C/12C ratio of phytoplankton organic carbon, expressed as 13C, to study patterns of assimilation. Upper estuary phytoplankton communities showed a smaller turn-over rate in carbon assimilation than lower estuary phytoplankton communities. Carbon assimilation was limited by light intensity in the upper estuary and by CO2 availability in the lower estuary. In the St Lawrence estuary, stable carbon isotope ratios of phytoplankton organic carbon seemed to be controlled by inorganic carbon availability rather than by phytoplankton metabolism.  相似文献   
113.
The native extracellular matrix (ECM) and the cells that comprise human tissues are together engaged in a complex relationship; cells alter the composition and structure of the ECM to regulate the material and biologic properties of the surrounding environment while the composition and structure of the ECM modulates cellular processes that maintain healthy tissue and repair diseased tissue. This reciprocal relationship occurs via cell adhesion molecules (CAMs) such as integrins, selectins, cadherins and IgSF adhesion molecules. To study these cell-ECM interactions, researchers use two-dimensional substrates or three-dimensional matrices composed of native proteins or bioactive peptide sequences to study single cell function. While two-dimensional substrates provide valuable information about cell-ECM interactions, three-dimensional matrices more closely mimic the native ECM; cells cultured in three-dimensional matrices have demonstrated greater cell movement and increased integrin expression when compared to cells cultured on two-dimensional substrates. In this article we review a number of cellular processes (adhesion, motility, phagocytosis, differentiation and survival) and examine the cell adhesion molecules and ECM proteins (or bioactive peptide sequences) that mediate cell functionality.  相似文献   
114.
Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high‐magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid–base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid–base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid–base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid–base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid–base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change.  相似文献   
115.
Cryptic species have been repeatedly described for two decades among the Antarctic fauna, challenging the classic model of Antarctic species with circumpolar distributions and leading to revisit the richness of the Antarctic fauna. No cryptic species had been so far recorded among Antarctic echinoids, which are, however, relatively well diversified in the Southern Ocean. The R/V Polarstern cruise PS81 (ANT XXIX/3) came across populations of Abatus bidens, a schizasterid so far known by few specimens that were found living in sympatry with the species Abatus cavernosus. The species A. cavernosus is reported to have a circum-Antarctic distribution, while A. bidens is only recorded with certainty in South Georgia and at the northern tip of the Antarctic Peninsula. Based on genetic and morphological analyses, our results clearly show that A. bidens and A. cavernosus are two distinct species. The analyzed specimens of A. bidens group together in two haplogroups separated from one another by 2.7 % of nucleotide differences. They are located in the Weddell Sea and in the Bransfield Strait. Specimens of A. cavernosus form one single haplogroup separated from haplogroups of A. bidens by 5 and 3.5 % of nucleotide differences, respectively. The species was collected in the Drake Passage and in the Bransfield Strait. Morphological analyses differentiate A. bidens from A. cavernosus. In contrast, the two genetic groups of A. bidens cannot be differentiated from one another based on morphology alone, suggesting that they may represent a case of cryptic species, common in many Antarctic taxa, but not yet reported in Antarctic echinoids. This needs to be confirmed by complementary analyses of independent genetic markers.  相似文献   
116.
The most common genetic cause for amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) is repeat expansion of a hexanucleotide sequence (GGGGCC) within the C9orf72 genomic sequence. To elucidate the functional role of C9orf72 in disease pathogenesis, we identified certain molecular interactors of this factor. We determined that C9orf72 exists in a complex with SMCR8 and WDR41 and that this complex acts as a GDP/GTP exchange factor for RAB8 and RAB39, 2 RAB GTPases involved in macroautophagy/autophagy. Consequently, C9orf72 depletion in neuronal cultures leads to accumulation of unresolved aggregates of SQSTM1/p62 and phosphorylated TARDBP/TDP-43. However, C9orf72 reduction does not lead to major neuronal toxicity, suggesting that a second stress may be required to induce neuronal cell death. An intermediate size of polyglutamine repeats within ATXN2 is an important genetic modifier of ALS-FTD. We found that coexpression of intermediate polyglutamine repeats (30Q) of ATXN2 combined with C9orf72 depletion increases the aggregation of ATXN2 and neuronal toxicity. These results were confirmed in zebrafish embryos where partial C9orf72 knockdown along with intermediate (but not normal) repeat expansions in ATXN2 causes locomotion deficits and abnormal axonal projections from spinal motor neurons. These results demonstrate that C9orf72 plays an important role in the autophagy pathway while genetically interacting with another major genetic risk factor, ATXN2, to contribute to ALS-FTD pathogenesis.  相似文献   
117.
Enterocytes, a major cell population of the intestinal epithelium, represent one possible barrier to the entry of prions after oral exposure. We established a cell culture system employing enterocytes from different species to study alimentary prion interaction with the 37-kDa/67-kDa laminin receptor LRP/LR. Human, bovine, porcine, ovine, and cervid enterocytes were cocultured with brain homogenates from cervid, sheep, and cattle suffering from chronic wasting disease (CWD), scrapie, and bovine spongiform encephalopathy (BSE), respectively. PrPCWD, ovine PrPSc, and PrPBSE all colocalized with LRP/LR on human enterocytes. PrPCWD failed to colocalize with LRP/LR on bovine, porcine, and ovine enterocytes. Ovine PrPSc colocalized with the receptor on bovine enterocytes, but failed to colocalize with LRP/LR on cervid and porcine enterocytes. PrPBSE failed to colocalize with the receptor on cervid and ovine enterocytes. These data suggest possible oral transmissibility of CWD and sheep scrapie to humans and may confirm the oral transmissibility of BSE to humans, resulting in zoonotic variant Creutzfeldt-Jakob disease. CWD might not be transmissible to cattle, pigs, and sheep. Sheep scrapie might have caused BSE, but may not cause transmissible spongiform encephalopathy in cervids and pigs. BSE may not be transmissible to cervids. Our data recommend the enterocyte model system for further investigations of the intestinal pathophysiology of alimentary prion infections.  相似文献   
118.
The study of electron transfer between the copper protein rusticyanin (RCy) and the c(4)-cytochrome CYC(41) of the acidophilic bacterium Acidithiobacillus ferrooxidans has evidenced a remarkable decrease of RCy's redox potential upon complex formation. The structure of the CYC(41) obtained at 2.2 A resolution highlighted a specific glutamate residue (E121) involved in zinc binding as potentially playing a central role in this effect, required for the electron transfer to occur. EPR and stopped-flow experiments confirmed the strong inhibitory effect of divalent cations on CYC(41):RCy complex formation. A docking analysis of the CYC(41) and RCy structure allows us to propose a detailed model for the complex-induced tuning of electron transfer in agreement with our experimental data, which could be representative of other copper proteins involved in electron transfer.  相似文献   
119.
120.
Pro‐aging effects of endogenous advanced glycation end‐products (AGEs) have been reported, and there is increasing interest in the pro‐inflammatory and ‐fibrotic effects of their binding to RAGE (the main AGE receptor). The role of dietary AGEs in aging remains ill‐defined, but the predominantly renal accumulation of dietary carboxymethyllysine (CML) suggests the kidneys may be particularly affected. We studied the impact of RAGE invalidation and a CML‐enriched diet on renal aging. Two‐month‐old male, wild‐type (WT) and RAGE?/? C57Bl/6 mice were fed a control or a CML‐enriched diet (200 μg CML/gfood) for 18 months. Compared to controls, we observed higher CML levels in the kidneys of both CML WT and CML RAGE?/? mice, with a predominantly tubular localization. The CML‐rich diet had no significant impact on the studied renal parameters, whereby only a trend to worsening glomerular sclerosis was detected. Irrespective of diet, RAGE?/? mice were significantly protected against nephrosclerosis lesions (hyalinosis, tubular atrophy, fibrosis and glomerular sclerosis) and renal senile apolipoprotein A‐II (ApoA‐II) amyloidosis (p < 0.001). A positive linear correlation between sclerosis score and ApoA‐II amyloidosis score (r = 0.92) was observed. Compared with old WT mice, old RAGE?/? mice exhibited lower expression of inflammation markers and activation of AKT, and greater expression of Sod2 and SIRT1. Overall, nephrosclerosis lesions and senile amyloidosis were significantly reduced in RAGE?/? mice, indicating a protective effect of RAGE deletion with respect to renal aging. This could be due to reduced inflammation and oxidative stress in RAGE?/? mice, suggesting RAGE is an important receptor in so‐called inflamm‐aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号