首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10847篇
  免费   779篇
  国内免费   767篇
  12393篇
  2024年   19篇
  2023年   149篇
  2022年   379篇
  2021年   660篇
  2020年   386篇
  2019年   474篇
  2018年   418篇
  2017年   313篇
  2016年   463篇
  2015年   720篇
  2014年   827篇
  2013年   810篇
  2012年   1030篇
  2011年   824篇
  2010年   500篇
  2009年   470篇
  2008年   510篇
  2007年   479篇
  2006年   390篇
  2005年   369篇
  2004年   288篇
  2003年   258篇
  2002年   189篇
  2001年   208篇
  2000年   150篇
  1999年   164篇
  1998年   97篇
  1997年   109篇
  1996年   110篇
  1995年   100篇
  1994年   106篇
  1993年   65篇
  1992年   64篇
  1991年   84篇
  1990年   53篇
  1989年   43篇
  1988年   25篇
  1987年   16篇
  1986年   14篇
  1985年   23篇
  1984年   14篇
  1983年   17篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
991.
992.
Yuan  Wenzhen  Xiao  Xingpeng  Yu  Xuan  Xie  Fuquan  Feng  Pengya  Malik  Kamran  Wu  Jingyuan  Ye  Ze  Zhang  Peng  Li  Xiangkai 《Probiotics and antimicrobial proteins》2022,14(1):60-71
Probiotics and Antimicrobial Proteins - Gastrointestinal mucositis associated with the use of chemotherapeutic drugs can seriously affect the quality of life of patients. In this study, a probiotic...  相似文献   
993.
We aim at finding the smallest set of genes that can ensure highly accurate classification of cancers from microarray data by using supervised machine learning algorithms. The significance of finding the minimum gene subsets is three-fold: 1) it greatly reduces the computational burden and "noise" arising from irrelevant genes. In the examples studied in this paper, finding the minimum gene subsets even allows for extraction of simple diagnostic rules which lead to accurate diagnosis without the need for any classifiers, 2) it simplifies gene expression tests to include only a very small number of genes rather than thousands of genes, which can bring down the cost for cancer testing significantly, 3) it calls for further investigation into the possible biological relationship between these small numbers of genes and cancer development and treatment. Our simple yet very effective method involves two steps. In the first step, we choose some important genes using a feature importance ranking scheme. In the second step, we test the classification capability of all simple combinations of those important genes by using a good classifier. For three "small" and "simple" data sets with two, three, and four cancer (sub)types, our approach obtained very high accuracy with only two or three genes. For a "large" and "complex" data set with 14 cancer types, we divided the whole problem into a group of binary classification problems and applied the 2-step approach to each of these binary classification problems. Through this "divide-and-conquer" approach, we obtained accuracy comparable to previously reported results but with only 28 genes rather than 16,063 genes. In general, our method can significantly reduce the number of genes required for highly reliable diagnosis  相似文献   
994.
During the human bone formation, the event of osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) is vital, and recent evidence has emphasized the important role of microRNAs (miRNAs) in osteogenic differentiation of hBMSCs. This study aims to examine the potential effects of miR-200c in osteogenic differentiation of hBMSCs and understand their underlying mechanisms. HBMSCs were obtained via human bone marrow. During osteogenic induction and differentiation, cells were transfected with different plasmids with the intention of investigating the roles of miR-200c on osteogenic differentiation, calcium salt deposition, alkaline-phosphatase (ALP) activity, mineralized nodule formation, osteocalcin (OCN) content, and proliferation of osteoblasts. Following transfection, dual luciferase reporter gene assay was conducted so as to explore the correlation between miR-200c and Myd88. Moreover, the AKT/β-Catenin signaling pathway was blocked with an AKT/β-Catenin inhibitor, AKTi, to investigate its involvement. The hBMSCs were successfully isolated from human bone marrow. Myd88 was determined as a target gene of miR-200c. Gain and loss-of-function assays confirmed that overexpression of miR-200c, or silencing of Myd88 promoted osteogenic differentiation, increased calcium salt deposition, ALP activity, mineralized nodule formation, and enhanced the proliferation of osteoblasts following osteogenic differentiation of hBMSCs. Meanwhile, the downregulation of miR-200c has been shown to have the opposite effect. Furthermore, these findings showed that the miR-200c overexpression activated the AKT/β-Catenin signaling pathway by targeting Myd88. To sum up, the miR-200c upregulation induces osteogenic differentiation of hBMSCs by activating the AKT/β-Catenin signaling pathway via the inhibition of Myd88, providing a target for treatment of bone repair.  相似文献   
995.
Aberrant microRNAs are widely identified in multiple cancers, including lung cancer. miR-135a-5p can function as a significant tumor regulator in diverse cancers via impacting multiple genes in oncogenic pathways. Nevertheless, the biological role of miR-135a-5p in lung cancer is poorly known. Here, we investigated its function in lung cancer. As exhibited, miR-135a-5p was elevated in lung cancer cells in contrast to BEAS-2B cells. Then, we inhibited miR-135a-5p expression by transfecting LV-anti-miR-135a-5p into lung cancer cells. As displayed, miR-135a-5p was obviously reduced in A549 and H1299 cells. Knockdown of miR-135a-5p repressed lung cancer cell growth and cell proliferation. Meanwhile, cell colony formation capacity was depressed, cell apoptosis was enhanced and cell cycle progression was blocked in G1 phase by inhibition of miR-135a-5p in vitro. Additionally, the migration and invasion of A549 and H1299 cells was strongly depressed by LV-anti-miR-135a-5p. For another, by using informatics analysis, lysyl oxidase-like 4 (LOXL4) was speculated as the downstream target of miR-135a-5p. We validated their direct correlation and moreover, overexpression of miR-135a-5p restrained LOXL4 levels in lung cancer cells. Subsequently, we proved that miR-135a-5p promoted lung cancer development via targeting LOXL4 by carrying out the in vivo assays. Taken these together, our study revealed miR-135a-5p might be indicated as a perspective for lung cancer via targeting LOXL4.  相似文献   
996.
Autophagy is a vital negative factor regulating cellular senescence. Purple sweet potato color (PSPC), one type of flavonoid, has been demonstrated to suppress endothelial senescence and restore endothelial function in diabetic mice by inhibiting the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing protein 3 (NLRP3) inflammasome. However, the roles of autophagy in the inflammatory response during endothelial senescence are unknown. Here, we found that PSPC augmented autophagy to restrict high-glucose-induced premature endothelial senescence. In addition, PSPC administration impaired endothelium aging in diabetic mice by increasing autophagy. Inhibition of autophagy accelerated endothelial senescence, while enhancement of autophagy delayed senescence. Moreover, deactivation of the NLRP3 inflammasome triggered by PSPC was autophagy-dependent. Autophagy receptor microtubule-associated protein 1 light chain 3 and p62 interacted with the inflammasome component NLRP3, suggesting that autophagosomes target the NLRP3 inflammasome and deliver it to the lysosome for degradation. Altogether, PSPC amplified cellular autophagy, subsequently attenuated NLRP3 inflammasome activity and finally delayed endothelial senescence to ameliorate cardiovascular complication. These results suggest a potential therapeutic target in senescence-related cardiovascular diseases.  相似文献   
997.
Huang  X.  Duan  N.  Xu  H.  Xie  T. N.  Xue  Y.-R.  Liu  C.-H. 《Molecular Biology》2019,53(4):624-624
Molecular Biology - The original article can be found online at DOI: 10.1134/S0026893318040088 Page 622, in Reagents and Solutions should read 20 mg/mL proteinase K; Page 622, in Reagents...  相似文献   
998.
Cui  Guibin  Zhao  Yanfeng  Zhang  Jialing  Chao  Manning  Xie  Kunliang  Zhang  Chao  Sun  Fengli  Liu  Shudong  Xi  Yajun 《Plant molecular biology》2019,100(4-5):391-410
Plant Molecular Biology - Our results reveal both soil drought and PEG can enhance malate, glutathione and ascorbate metabolism, and proline biosynthesis, whereas soil drought induced these...  相似文献   
999.
Qin  Xingping  Akter  Farhana  Qin  Lingxia  Xie  Qiurong  Liao  Xinyu  Liu  Rui  Wu  Xueting  Cheng  Nina  Shao  Lingmin  Xiong  Xiaoxing  Liu  Renzhong  Wan  Qi  Wu  Songlin 《Neurochemical research》2019,44(11):2658-2669
Neurochemical Research - Subarachnoid hemorrhage (SAH) is a form of stroke associated with high mortality and morbidity. Despite advances in treatment for SAH, the prognosis remains poor. We have...  相似文献   
1000.
The inhibitor of growth 4 (ING4) is known as a tumor suppressor. The expressions of ING4 were markedly reduced in human renal clear cell carcinoma (ccRCC) tissues. However, the role of ING4 in renal cell carcinoma (RCC) remains unknown. The aim of the current study was to detect the ING4 expression level and its potential role in human RCC cell lines. Our results showed that ING4 was lowly expressed in human RCC cell lines compared with that in proximal tubular cell line. Ectopic overexpression of ING4 inhibited the proliferation, migration, and invasion properties, and as well as prevented epithelial-mesenchymal transition (EMT) phenotype of RCC cells. In addition, ING4 overexpression induced cell apoptosis and autophagy in RCC cells. Furthermore, ING4 overexpression suppressed the activation of PI3K/Akt pathway in RCC cells. The activator of PI3K/Akt, insulin-like growth factor 1, abolished the effects of ING4 on RCC cells. These findings indicated that ING4 presented anticancer activity in RCC cells. The effects of ING4 on RCC cells were mediated by regulating the PI3K/Akt pathway. These findings suggested that ING4 could be used for gene therapy of RCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号