首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3796篇
  免费   359篇
  国内免费   282篇
  2024年   8篇
  2023年   44篇
  2022年   114篇
  2021年   176篇
  2020年   133篇
  2019年   151篇
  2018年   157篇
  2017年   110篇
  2016年   157篇
  2015年   245篇
  2014年   292篇
  2013年   277篇
  2012年   378篇
  2011年   291篇
  2010年   188篇
  2009年   151篇
  2008年   177篇
  2007年   173篇
  2006年   151篇
  2005年   141篇
  2004年   121篇
  2003年   125篇
  2002年   131篇
  2001年   96篇
  2000年   84篇
  1999年   78篇
  1998年   38篇
  1997年   36篇
  1996年   28篇
  1995年   24篇
  1994年   24篇
  1993年   18篇
  1992年   23篇
  1991年   25篇
  1990年   15篇
  1989年   10篇
  1988年   9篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1976年   3篇
  1975年   1篇
  1973年   2篇
  1971年   2篇
  1969年   1篇
  1956年   1篇
  1952年   2篇
排序方式: 共有4437条查询结果,搜索用时 15 毫秒
71.

Background

A functional -94 insertion/deletion polymorphism (rs28362491) in the promoter of the NFKB1 gene was reported to influence NFKB1 expression and confer susceptibility to different types of cancer. This study aims to determine whether the polymorphism is associated with risk of bladder cancer.

Materials and methods

TaqMan assay was used to determine genotype among 609 cases and 640 controls in a Chinese population. Logistic regression was used to assess the association between the polymorphism and bladder cancer risk, and quantitative real-time polymerase chain reaction was used to determine NFKB1 mRNA expression.

Results

Compared with the ins/ins/ins/del genotypes, the del/del genotype was associated with a significantly increased risk of bladder cancer [adjusted odd ratio (OR)  = 1.92, 95% confidence interval (CI)  = 1.42–2.59]. The increased risk was more prominent among subjects over 65 years old (OR  = 2.37, 95% CI  = 1.52–3.70), male subjects (OR  = 1.97, 95% CI = 1.40–2.79) and subjects with self-reported family history of cancer (OR  = 3.59, 95% CI  = 1.19–10.9). Furthermore, the polymorphism was associated with a higher risk of developing non-muscle invasive bladder cancer (OR  = 2.07, 95% CI  = 1.51–2.85), grade 1 bladder cancer (OR  = 2.40, 95% CI  = 1.68–3.43), single tumor bladder cancer (OR  = 2.04, 95% CI  = 1.48–2.82) and smaller tumor size bladder cancer (OR  = 2.10, 95% CI  = 1.51–2.92). The expression of NFKB1 mRNA in bladder cancer tissues with homozygous insertion genotype was higher than that with deletion allele.

Conclusions

In conclusion, the -94 ins/del ATTG polymorphism in NFKB1 promoter may contribute to the etiology of bladder cancer in the Chinese population.  相似文献   
72.

Background

Chronicity of pain is one of the most interesting questions in chronic pain study. Clinical and experimental data suggest that supraspinal areas responsible for negative emotions such as depression and anxiety contribute to the chronicity of pain. The amygdala is suspected to be a potential structure for the pain chronicity due to its critical role in processing negative emotions and pain information.

Objective

This study aimed to investigate whether amygdala or its subregions, the basolateral amygdala (BLA) and the central medial amygdala (CeA), contributes to the pain chronicity in the spared nerve injury (SNI)-induced neuropathic pain model of rats.

Methodology/Principal Findings

(1) Before the establishment of the SNI-induced neuropathic pain model of rats, lesion of the amygdaloid complex with stereotaxic injection of ibotenic acid (IBO) alleviated mechanical allodynia significantly at days 7 and 14, even no mechanical allodynia at day 28 after SNI; Lesion of the BLA, but not the CeA had similar effects; (2) however, 7 days after SNI when the neuropathic pain model was established, lesion of the amygdala complex or the BLA or the CeA, mechanical allodynia was not affected.

Conclusion

These results suggest that BLA activities in the early stage after nerve injury might be crucial to the development of pain chronicity, and amygdala-related negative emotions and pain-related memories could promote pain chronicity.  相似文献   
73.
Recently, it was found that microglia regulated synaptic remodeling of the developing brain, but their mechanisms have not been well understood. In this study, the action of microglia on neuronal synapse formation was investigated, and the primary target of microglial processes was discovered. When the developing microglia were applied to cultured hippocampal neurons without direct contact, the numbers of dendritic spines and excitatory and inhibitory synapses significantly increased. In order to find out the main factor for synaptic formation, the effects of cytokines released from microglia were examined. When recombinant proteins of cytokines were applied to neuronal culture media, interleukin 10 increased the numbers of dendritic spines in addition to excitatory and inhibitory synapses. Interestingly, without external stimuli, the amount of interleukin 10 released from the intact microglia appeared to be sufficient for the induction of synaptic formation. The neutralizing antibodies of interleukin 10 receptors attenuated the induction of the synaptic formation by microglia. The expression of interleukin 10 receptor was newly found in the hippocampal neurons of early developmental stage. When interleukin 10 receptors on the hippocampal neurons were knocked down with specific shRNA, the induction of synaptic formation by microglia and interleukin 10 disappeared. Pretreatment with lipopolysaccharide inhibited microglia from inducing synaptic formation, and interleukin 1β antagonized the induction of synaptic formation by interleukin 10. In conclusion, the developing microglia regulated synaptic functions and neuronal development through the interactions of the interleukin 10 released from the microglia with interleukin 10 receptors expressed on the hippocampal neurons.  相似文献   
74.
Indian Journal of Microbiology - For bacteria sampling studies, various collection methods have been used to identify bacteria. To obtain accurate information about bacteria, high quality samples...  相似文献   
75.
Mass spectrometry imaging (MSI) can visualize the composition, abundance, and spatial distribution of molecules in tissues or cells, which has been widely used in the research of life science. Insects, especially the agricultural pests, have received a great deal of interests from the scientists in biodiversity and food security. This review introduces the major characteristics of MSI, summarizes its application to the investigation of insect endogenous metabolites, exogenous metabolites, and the spatiotemporal changes of metabolites between insects and plants, and discusses its shortfalls and perspectives. The significance of these concerns is beneficial for future insect research such as physiology and metabolism.  相似文献   
76.
Cover Image     
Microalgae have been shown as a potential bioresource for food, biofuel, and pharmaceutical products. During the growth phases with corresponding environmental conditions, microalgae accumulate different amounts of various metabolites. We quantified the neutral lipids accumulation and analyzed the swimming signatures (speed and trajectories) of the motile green alga, Dunaliella primolecta, during the lag–exponential–stationary growth cycle at different nutrient concentrations. We discovered significant changes in the neutral lipid content and swimming signatures of microalgae across growth phases. The timing of the maximum swimming speed coincided with the maximum neutral lipid content and both maxima occurred under nutrient stress at the stationary growth phase. Furthermore, the swimming trajectories suggested statistically significant changes in swimming modes at the stationary growth phase when the maximum intracellular neutral lipid content was observed. Our results provide the potential exploitation of microalgal swimming signatures as possible indicators of the cultivation conditions and the timing of microalgal harvest to maximize the lipid yield for biofuel production. The findings can also be implemented to explore the production of food and antibiotics from other microalgal metabolites with low energy costs.  相似文献   
77.
Position-effect variegation (PEV) phenotypes are characterized by the robust multigenerational repression of a gene located at a certain locus (often called gene silencing) and occasional conversions to fully active state. Consequently, the active state then persists with occasional conversions to the repressed state. These effects are mediated by the establishment and maintenance of heterochromatin or euchromatin structures, respectively. In this study, we have addressed an important but often neglected aspect of PEV: the frequency of conversions at such loci. We have developed a model and have projected various PEV scenarios based on various rates of conversions. We have also enhanced two existing assays for gene silencing in Saccharomyces cerevisiae to measure the rate of switches from repressed to active state and vice versa. We tested the validity of our methodology in Δsir1 cells and in several mutants with defects in gene silencing. The assays have revealed that the histone chaperone Chromatin Assembly Factor I is involved in the control of epigenetic conversions. Together, our model and assays provide a comprehensive methodology for further investigation of epigenetic stability and position effects.  相似文献   
78.
A farnesyl diphosphate synthase gene (FPPS2), which contains 11 introns and 12 exons, was isolated from the apple cultivar “White Winter Pearmain”. When it was compared to our previously reported FPPS1, its each intron size was different, its each exon size was the same as that of FPPS1 gene, 30 nucleotide differences were found in its coding sequence. Based on these nucleotide differences, specific primers were designed to perform expression analysis; the results showed that it expressed in both fruit and leaf, its expression level was obviously lower than that of FPPS1 gene in fruit which was stored at 4 °C for 5 weeks. This is the first report concerning two FPPS genes and their expression comparison in apples.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号