首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2318篇
  免费   188篇
  国内免费   4篇
  2510篇
  2023年   10篇
  2022年   30篇
  2021年   33篇
  2020年   19篇
  2019年   29篇
  2018年   28篇
  2017年   21篇
  2016年   53篇
  2015年   125篇
  2014年   150篇
  2013年   176篇
  2012年   194篇
  2011年   194篇
  2010年   108篇
  2009年   107篇
  2008年   128篇
  2007年   120篇
  2006年   109篇
  2005年   107篇
  2004年   100篇
  2003年   72篇
  2002年   71篇
  2001年   66篇
  2000年   58篇
  1999年   46篇
  1998年   28篇
  1997年   16篇
  1996年   12篇
  1995年   11篇
  1994年   12篇
  1993年   7篇
  1992年   26篇
  1991年   40篇
  1990年   24篇
  1989年   17篇
  1988年   19篇
  1987年   14篇
  1986年   13篇
  1985年   13篇
  1983年   6篇
  1981年   5篇
  1980年   6篇
  1979年   8篇
  1978年   11篇
  1977年   11篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
  1971年   4篇
  1969年   5篇
排序方式: 共有2510条查询结果,搜索用时 15 毫秒
121.
A trypsin inhibitor (ACTI) was isolated and purified from the seeds of Acacia confusa by gel filtration, and trypsin-Sepharose 4B column affinity chromatography. The molecular weight of ACTI was found to be 21,000 +/- 1,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino acid composition analysis. ACTI contained four half-cystine and no methionine residues, and was rich in aspartic acid, glutamic acid, glycine, leucine, and lysine residues. The native trypsin inhibitor was composed of two polypeptide chains, and it inhibited trypsin and alpha-chymotrypsin stoichiometrically at the molar ratio of 1:1 and 2:1, respectively. The amino-terminal sequence analysis of the A. confusa trypsin inhibitor A and B chains revealed a more extensive homology with Acacia elata and silk tree trypsin inhibitors, and a less extensive homology with Kunitz soybean trypsin inhibitor.  相似文献   
122.
Epirubicin is an anthracycline and is widely used in tumor treatment, but has toxic and undesirable side effects on wide range of cells and hematopoietic stem cells (HSC). Osteoblasts play important roles in bone development and in supporting HSC differentiation and maturation. It remains unknown whether epirubicin-induced bone loss and hematological toxicity are associated with its effect on osteoblasts. In primary osteoblast cell cultures, epirubicin inhibited cell growth and decreased mineralization. Moreover, epirubicin arrested osteoblasts in the G2/M phase, and this arrest was followed by apoptosis in which both the extrinsic (death receptor-mediated) and intrinsic (mitochondrial-mediated) apoptotic pathways were evoked. The factors involved in the extrinsic apoptotic pathway were increased FasL and FADD as well as activated caspase-8. Those involved in the intrinsic apoptotic pathway were decreased Bcl-2; increased reactive oxygen species, Bax, cytochrome c; and activated caspase-9 and caspase-3. These results demonstrate that epirubicin induced osteoblast apoptosis through the extrinsic and intrinsic apoptotic pathways, leading to the destruction of osteoblasts and consequent lessening of their functions in maintaining bone density and supporting hematopoietic stem cell differentiation and maturation.  相似文献   
123.
The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid‐deficient conditions is not completely understood. Here, we identify ADP‐ribosylation factor GTPase‐activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature‐sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.  相似文献   
124.
M Chao  S Y Hsieh    J Taylor 《Journal of virology》1991,65(8):4057-4062
The only known protein of hepatitis delta virus (HDV), the delta antigen, is found both within virus particles and within the nucleus of the infected cell, where it has one or more roles essential for RNA genome replication. Others have demonstrated that the antigen has the ability, in vitro, to specifically bind HDV RNA species. We report a further examination of this phenomenon, using partially purified recombinant protein, expressed as a fusion with the staphylococcal protein A. From Northwestern (RNA-immunoblot) analyses with both complete and various subdomains of HDV genomic and antigenomic RNAs, we found that a necessary feature for specific binding was that the RNA be able to fold to some extent into the so-called rodlike structure; this structure is a predicted intramolecular partial base-pairing of the circular RNA, with about 70% of all bases involved, so as to produce an unbranched rodlike structure. Six different subregions of the HDV rodlike structure, three on the genomic RNA and three on its complement, the antigenomic RNA, were tested and found to be sufficient for antigen binding. However, features in addition to the rodlike structure may also be necessary for specific binding, because we found that a similar structure present in the RNA of the potato spindle tuber viroid did not allow binding.  相似文献   
125.
An ecosystem-level study was conducted in the Guandu wetlands insubtropical coastal Taiwan to examine how salinity influences the abundance,diversity, and structure of biotic communities. We surveyed eight permanentstudy sites, spanning freshwater marshes, to the gate on the dyke, andmesohaline mangroves representing a gradient of the extent of saltwaterincursions. Analyses of abiotic variables showed that salinity was the primarydetermining factor for discriminating habitat types in the wetlands, butcommunities differed in their sensitivity to salinity. The composition of plantand insect communities was most affected by the salinity gradient, suggestingthe utility of these communities for ecological monitoring of saltwaterincursions. However, spatial changes in communities at higher trophic levels,including macrobenthos, mollusks, fish, and birds, could not be explained simplyby the salinity gradient. Instead, changes in these communities were morerelevant to the composition of other biotic communities. Our results show thatspecies richness and diversity of plant communities were higher in the marshesthan in the mangroves. Nevertheless, insect communities censused in themangroves had higher diversity, despite lower abundance and species richness.Macrobenthos surveyed in the mangroves showed higher biomass and number of taxa.Mollusks and fish were also more abundant at sites near the gate compared to themarsh sites. This suggests that maintaining a tidal flux by means of gateregulation is necessary for conserving the spatial heterogeneity andbiodiversity of coastal wetlands.  相似文献   
126.
Changes in human granulocytic ehrlichiosis (HGE)-specific major outer membrane protein (p44 kD) were assayed by Western blot analysis in HL-60 cells in vitro infected by the HGE agent. Time course study demonstrated that the expression of p44 preceded the rise in cell infection as determined by the presence of intracellular morulae. To test whether the expression of p44 may be suitable for evaluating the effects of antibiotics in vitro, three recent isolates of the HGE agent were exposed to doxycycline and ampicillin during culture with HL-60 cells. Loss of infection concurrent with disappearance of the 44 kD protein was found with doxycycline treatment. In contrast, ampicillin treatment had no discernible effects on infection or 44 kD expression. There was excellent agreement between infection, as measured by morulae, and 44 kD expression (coefficient of correlation r = 0.97, p < 0.01). Following treatment with doxycycline, the 44 kD protein disappeared with an estimated t1/2 of approximately 24-30 h, which was considerably shorter than a t1/2 of >60 h calculated for loss of morulae. Measurement of p44 expression may be a more rapid and simple assay to determine antibiotic susceptibility of the HGE agent in cell culture. Furthermore, it may be used to indicate the presence of infection before morulae are apparent.  相似文献   
127.
128.
To examine the p53-mediated biological activities and signalling pathways, we generated stable transfectants of the p53-null IW32 murine erythroleukemia cells expressing the temperature-sensitive p53 mutant DNA, tsp53(val135). Two clones with different levels of p53 protein expression were selected for further characterization. At permissive temperature, clone 1-5 cells differentiated along the erythroid pathway, and clone 3-2 cells that produced greater levels (3.5-fold) of p53 underwent apoptosis. Apoptosis of 3-2 cells was accompanied by mitochondrial cytochrome c release and caspase activation as well as by cleavage of caspase substrates. Bax protein was induced to a similar extent in these clones by wild-type p53; expression of p21(Cip1/Waf1) and p27(Kip1) proteins was also increased. However, significantly lesser extent of induction for both CDK inhibitors was detected in the apoptotic 3-2 clone. The general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.fmk) blocked the p53-induced apoptosis in 3-2 cells, with a concomitant elevation of p27(Kip1), suggesting that p27(Kip1) protein underwent caspase-dependent proteolysis in the apoptotic 3-2 cells. Together these results linked a pathway involving cytochrome c release, caspase activation and p27(Kip1) degradation to the p53-induced apoptosis in IW32 erythroleukemia cells.  相似文献   
129.
The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single‐stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein functions is the intrinsically disordered linker. Key to linker function is the presence of three, conserved PXXP motifs that mediate binding to oligosaccharide‐oligonucleotide binding folds (OB‐fold) present in SSB and its interactome partners. Not surprisingly, partner OB‐fold deletions eliminate SSB binding. Furthermore, single point mutations in either the PXXP motifs or, in the RecG OB‐fold, obliterate SSB binding. The data also demonstrate that, and in contrast to the view currently held in the field, the C‐terminal acidic tip of SSB is not required for interactome partner binding. Instead, we propose the tip has two roles. First, and consistent with the proposal of Dixon, to regulate the structure of the C‐terminal domain in a biologically active conformation that prevents linkers from binding to SSB OB‐folds until this interaction is required. Second, as a secondary binding domain. Finally, as OB‐folds are present in SSB and many of its partners, we present the SSB interactome as the first family of OB‐fold genome guardians identified in prokaryotes.  相似文献   
130.

Background

The envelope (E) protein of dengue virus (DENV) is the major immunogen for dengue vaccine development. At the C-terminus are two α-helices (EH1 and EH2) and two transmembrane domains (ET1 and ET2). After synthesis, E protein forms a heterodimer with the precursor membrane (prM) protein, which has been shown as a chaperone for E protein and could prevent premature fusion of E protein during maturation. Recent reports of enhancement of DENV infectivity by anti-prM monoclonal antibodies (mAbs) suggest the presence of prM protein in dengue vaccine is potentially harmful. A better understanding of prM-E interaction and its effect on recognition of E and prM proteins by different antibodies would provide important information for future design of safe and effective subunit dengue vaccines.

Methodology/Principal Findings

In this study, we examined a series of C-terminal truncation constructs of DENV4 prME, E and prM. In the absence of E protein, prM protein expressed poorly. In the presence of E protein, the expression of prM protein increased in a dose-dependent manner. Radioimmunoprecipitation, sucrose gradient sedimentation and pulse-chase experiments revealed ET1 and EH2 were involved in prM-E interaction and EH2 in maintaining the stability of prM protein. Dot blot assay revealed E protein affected the recognition of prM protein by an anti-prM mAb; truncation of EH2 or EH1 affected the recognition of E protein by several anti-E mAbs, which was further verified by capture ELISA. The E protein ectodomain alone can be recognized well by all anti-E mAbs tested.

Conclusions/Significance

A C-terminal domain (EH2) of DENV E protein can affect the expression and stability of its chaperone prM protein. These findings not only add to our understanding of the interaction between prM and E proteins, but also suggest the ectodomain of E protein alone could be a potential subunit immunogen without inducing anti-prM response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号