首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57884篇
  免费   4616篇
  国内免费   4442篇
  66942篇
  2024年   141篇
  2023年   789篇
  2022年   1849篇
  2021年   3044篇
  2020年   2080篇
  2019年   2501篇
  2018年   2344篇
  2017年   1805篇
  2016年   2544篇
  2015年   3627篇
  2014年   4380篇
  2013年   4436篇
  2012年   5286篇
  2011年   4762篇
  2010年   2882篇
  2009年   2598篇
  2008年   2937篇
  2007年   2634篇
  2006年   2261篇
  2005年   1886篇
  2004年   1509篇
  2003年   1420篇
  2002年   1072篇
  2001年   909篇
  2000年   889篇
  1999年   810篇
  1998年   499篇
  1997年   454篇
  1996年   477篇
  1995年   422篇
  1994年   413篇
  1993年   325篇
  1992年   446篇
  1991年   324篇
  1990年   284篇
  1989年   260篇
  1988年   210篇
  1987年   194篇
  1986年   176篇
  1985年   154篇
  1984年   115篇
  1983年   122篇
  1982年   81篇
  1981年   45篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
941.
Embryo implantation into the maternal uterus is a crucial step for the successful establishment of mammalian pregnancy. Following the attachment of embryo to the uterine luminal epithelium, uterine stromal cells undergo steroid hormone-dependent decidualization, which is characterized by stromal cell proliferation and differentiation. The mechanisms underlying steroid hormone-induced stromal cell proliferation and differentiation during decidualization are still poorly understood. Ribonucleotide reductase, consisting of two subunits (RRM1 and RRM2), is a rate-limiting enzyme in deoxynucleotide production for DNA synthesis and plays an important role in cell proliferation and tumorgenicity. Based on our microarray analysis, Rrm2 expression was significantly higher at implantation sites compared with interimplantation sites in mouse uterus. However, the expression, regulation, and function of RRM2 in mouse uterus during embryo implantation and decidualization are still unknown. Here we show that although both RRM1 and RRM2 expression are markedly induced in mouse uterine stromal cells undergoing decidualization, only RRM2 is regulated by progesterone, a key regulator of decidualization. Further studies showed that the induction of progesterone on RRM2 expression in stromal cells is mediated by the AKT/c-MYC pathway. RRM2 can also be induced by replication stress and DNA damage during decidualization through the ATR/ATM-CHK1-E2F1 pathway. The weight of implantation sites and deciduoma was effectively reduced by specific inhibitors for RRM2. The expression of decidual/trophoblast prolactin-related protein (Dtprp), a reliable marker for decidualization in mice, was significantly reduced in deciduoma and steroid-induced decidual cells after HU treatment. Therefore, RRM2 may be an important effector of progesterone signaling to induce cell proliferation and decidualization in mouse uterus.  相似文献   
942.
The kinesin family member 14 (KIF14) is a potential oncogene and is involved in the metastasis of various cancers. Nevertheless, its function in gastric cancer (GC) remains poorly defined. The expression of KIF14 was examined in GC cell lines and a clinical cohort of GC specimens by qPCR, western blotting and immunohistochemistry (IHC) staining. The relationship between KIF14 expression and the clinicopathological features was analyzed. The effect of KIF14 on cell proliferation, colony formation, invasion and migration were investigated in vitro and in vivo. The expression of KIF14 was significantly increased in the GC tissues and cell lines. High KIF14 expression was associated with tumor stage, tumor-node-metastasis (TNM) stage and metastasis. KIF14 was an independent prognostic factor for the overall survival of GC, and a higher expression of KIF14 predicted a poorer survival. KIF14 silencing resulted in attenuated proliferation, invasion and migration in human gastric cancer cells, whereas KIF14 ectopic expression facilitated these biological abilities. Notably, the depressed expression of KIF14 inhibited Akt phosphorylation, while overexpressed KIF14 augmented Akt phosphorylation. Additionally, there was a significant correlation between the expression of KIF14 and p?Akt in GC tissues. Importantly, the proliferation, invasion and migration of the GC cells, which was promoted by KIF14 overexpression, was abolished by the Akt inhibitor MK-2206, while Akt overexpression greatly rescued the effects induced by KIF14 knockdown. Our findings are the first to demonstrate that KIF14 is overexpressed in GC, is correlated with poor prognosis and plays a crucial role in the progression and metastasis of GC.  相似文献   
943.
Regeneration of pulmonary epithelial cells plays an important role in the recovery of acute lung injury (ALI), which is defined by pulmonary epithelial cell death. However, the mechanism of the regenerative capacity of alveolar epithelial cells is unknown. Using a lung injury mouse model induced by hemorrhagic shock and lipopolysaccharide, a protein mass spectrometry‐based high‐throughput screening and linage tracing technology to mark alveolar epithelial type 2 cells (AEC2s), we analyzed the mechanism of alveolar epithelial cells proliferation. We demonstrated that the expression of Hippo‐yes‐associated protein 1 (YAP1) key proteins were highly consistent with the regularity of the proliferation of alveolar epithelial type 2 cells after ALI. Furthermore, the results showed that YAP1+ cells in lung tissue after ALI were mainly Sftpc lineage‐labeled AEC2s. An in vitro proliferation assay of AEC2s demonstrated that AEC2 proliferation was significantly inhibited by both YAP1 small interfering RNA and Hippo inhibitor. These findings revealed that YAP functioned as a key regulator to promote AEC2s proliferation, with the Hippo signaling pathway playing a pivotal role in this process.  相似文献   
944.
Liu Y  Fang JD  Wen T 《中国应用生理学杂志》2002,18(2):113-113,114,178
丁香酚是中药丁香油中的主要作用成份,它具有多种复杂的药理作用,尤其在解热降温方面有显著作用.本研究室以往的电生理实验观察到,丁香酚可反转致热原作用下的PO/AH(视前区-下丘脑前部)温度敏感神经元的放电活动,说明丁香酚的解热作用是通过直接或间接地影响PO/AH神经元的放电活动而实现的.近年来,弓状核在体温调节方面的作用倍受观注.本研究室多年的研究表明,弓状核积极地参与了体温调节活动,因为毁损弓状核后大鼠体温发生明显紊乱.本实验对PO/AH与弓状核在体温调节中的作用进行比较性研究,同时观察家兔发热以及丁香酚解热时在家兔弓状核及PO/AH中PGE2和cAMP含量的变化.  相似文献   
945.
Three fibroblast growth factor (FGF) molecules, FGF19, FGF21, and FGF23, form a unique subfamily that functions as endocrine hormones. FGF19 and FGF21 can regulate glucose, lipid, and energy metabolism, while FGF23 regulates phosphate homeostasis. The FGF receptors and co-receptors for these three FGF molecules have been identified, and domains important for receptor interaction and specificity determination are beginning to be elucidated. However, a number of questions remain unanswered, such as the identification of fibroblast growth factor receptor responsible for glucose regulation. Here, we have generated a variant of FGF23: FGF23-21c, where the C-terminal domain of FGF23 was replaced with the corresponding regions from FGF21. FGF23-21c showed a number of interesting and unexpected properties in vitro. In contrast to wild-type FGF23, FGF23-21c gained the ability to activate FGFR1c and FGFR2c in the presence of βKlotho and was able to stimulate glucose uptake into adipocytes in vitro and lower glucose levels in ob/ob diabetic mice model to similar extent as FGF21 in vivo. These results suggest that βKlotho/FGFR1c or FGFR2c receptor complexes are sufficient for glucose regulation. Interestingly, without the FGF23 C-terminal domain, FGF23-21c was still able to activate fibroblast growth factor receptors in the presence of αKlotho. This suggests not only that sequences outside of the C-terminal region may also contribute to the interaction with co-receptors but also that FGF23-21c may be able to regulate both glucose and phosphate metabolisms. This raises an interesting concept of designing an FGF molecule that may be able to address multiple diseases simultaneously. Further understanding of FGF/receptor interactions may allow the development of exciting opportunities for novel therapeutic discovery.  相似文献   
946.
With the aim of developing a pH-sensitive controlled drug release system, a poly (L-lysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.  相似文献   
947.
Monocytes/macrophages link the innate and adaptive immune systems, and in inflammatory disorders their activation leads to tissue damage. 15-Deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), a natural peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has garnered much interest because it possesses anti-inflammatory properties in a number of experimental models. However, whether it regulates monocytes/macrophage pathophysiology is still unknown. This study was designed to examine the effects of 15d-PGJ(2) on the phagocytosis, proliferation and inflammatory cytokines generation in mouse monocyte/macrophage cell line RAW264.7 and J774A.1 cells upon lipopolysaccharide challenge. Our results showed that 15d-PGJ(2) inhibited the phagocytic activity and cell proliferation in a dose-dependent manner, and suppressed proinflammatory cytokines expression, such as tumor necrosis factor-α, transforming growth factor-β1, interleukin-6, and monocyte chemotactic protein-1. These effects were independent of PPARγ, because PPARγ agonist (troglitazone or ciglitazone) and PPARγ antagonist (GW9662) did not affect these activities mentioned above in cells. Treatment of 15d-PGJ(2) also did not modulate expression and distribution of PPARγ. However, these effects of 15d-PGJ(2) were abrogated by antioxidant N-acetylcysteine. Moreover, treatment of 15d-PGJ(2) induced a significant increase in reactive oxygen species production in RAW264.7 and J774A.1 cells. In conclusion, 15d-PGJ(2) attenuates the biological activities of mouse monocyte/macrophage cell line cells involving oxidative stress, independently of PPARγ. These data further underline the anti-inflammation potential of 15d-PGJ(2).  相似文献   
948.
根据NCBI GenBank中报道的NPR1一级结构信息,采用Blastn、Blastx、ExPASy和Protean等软件进行序列同源性和抗原性指数分析,获得三段序列特异性较高的多肽,并从中优选一段序列特异性多肽,采用9-氟甲氧羰基固相合成法获得序列特异性最好的多肽,采用HPLC和LC-MS测定合成多肽的浓度和分子量,试验表明目的多肽纯度达88%、目的多肽分子量为1.92234 kD。采用碳化二亚胺法将多肽与KLH进行偶联获得免疫原Pep-KLH,并将其免疫新西兰大白兔以获得抗血清和多克隆抗体,采用ELISA和Western blotting测定其效价和特异性,经ELISA检测表明抗血清和多克隆抗体可与Pep发生特异性免疫反应,经Western blotting试验表明抗血清和多克隆抗体可识别烟草叶片特异性条带,其相对分子量为65 kD,与预测分子量相符,表明利用该方法制备的NPR1多肽抗体具有较高特异性和灵敏度。  相似文献   
949.
尽管大多数动物实验的结果表明通过饮水或饲料补充精氨酸对一些肿瘤的形成、生长及转移均有显著的抑制作用,但也有少数几篇相反结果的报道。我们采用小鼠腹腔注射的方法,观察了不同剂量(0.1、0.05、0.025克/每天)精氨酸对S180瘤生长的影响,结果发现精氨酸对S180瘤的生长具有显著的促进作用,尤其是0.05克/每天剂量组,文中就其可能机制进行了讨论。  相似文献   
950.
We developed a simple and universal method, by modifying the universal CAS (Chrome azurol S) assay, measuring siderophores in various biological fluids. We named the assay as CAS agar diffusion (CASAD) assay. CAS plate devoid of nutrients was prepared by using Bacto-agar (1.5%, w/v) as a matrix. Holes with 5-mm-diameter were punched on the CAS agar plate. Each hole was added by 35 microl of the test fluids containing Desferal that was twofold serially diluted. After incubating at 37 degrees C or room temperature for 4-8 h, the size of orange haloes formed around the holes was measured. The size of orange haloes correlated well with the concentration of Desferal in all the biological fluids tested in this study. CASAD assay showed consistent results in wide pH range from 5 to 9. Addition of iron to the test fluids containing Desferal decreased the size of orange haloes in a dose-dependent manner, which suggests that the CASAD assay detects only iron non-bound siderophore. These results suggest that CASAD assay would serve as a simple, stable, and highly reproducible test for screening and quantitative siderophore analysis in biological fluids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号