首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5534篇
  免费   540篇
  国内免费   121篇
  2023年   39篇
  2022年   93篇
  2021年   172篇
  2020年   101篇
  2019年   120篇
  2018年   130篇
  2017年   91篇
  2016年   161篇
  2015年   315篇
  2014年   333篇
  2013年   401篇
  2012年   484篇
  2011年   431篇
  2010年   250篇
  2009年   209篇
  2008年   310篇
  2007年   250篇
  2006年   246篇
  2005年   229篇
  2004年   199篇
  2003年   182篇
  2002年   172篇
  2001年   108篇
  2000年   124篇
  1999年   109篇
  1998年   65篇
  1997年   49篇
  1996年   35篇
  1995年   35篇
  1994年   44篇
  1993年   41篇
  1992年   70篇
  1991年   56篇
  1990年   45篇
  1989年   55篇
  1988年   50篇
  1987年   35篇
  1986年   39篇
  1985年   30篇
  1984年   50篇
  1983年   27篇
  1982年   27篇
  1981年   22篇
  1980年   15篇
  1979年   27篇
  1978年   24篇
  1977年   20篇
  1975年   16篇
  1974年   9篇
  1971年   11篇
排序方式: 共有6195条查询结果,搜索用时 218 毫秒
961.
C-type lectin receptors expressed on the surface of dendritic cells and macrophages are able to bind glycoproteins of microbial pathogens via mannose, fucose, and N-acetylglucosamine. Langerin on Langerhans cells, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin on dendritic cells, and mannose receptor (MR) on dendritic cells and macrophages bind the human immunodeficiency virus (HIV) envelope protein gp120 principally via high mannose oligosaccharides. These C-type lectin receptors can also oligomerize to facilitate enhanced ligand binding. This study examined the effect of oligomerization of MR on its ability to bind to mannan, monomeric gp120, native trimeric gp140, and HIV type 1 BaL. Mass spectrometry analysis of cross-linked MR showed homodimerization on the surface of primary monocyte-derived dendritic cells and macrophages. Both monomeric and dimeric MR were precipitated by mannan, but only the dimeric form was co-immunoprecipitated by gp120. These results were confirmed independently by flow cytometry analysis of soluble monomeric and trimeric HIV envelope and a cellular HIV virion capture assay. As expected, mannan bound to the carbohydrate recognition domains of MR dimers mostly in a calcium-dependent fashion. Unexpectedly, gp120-mediated binding of HIV to dimers on MR-transfected Rat-6 cells and macrophages was not calcium-dependent, was only partially blocked by mannan, and was also partially inhibited by N-acetylgalactosamine 4-sulfate. Thus gp120-mediated HIV binding occurs via the calcium-dependent, non-calcium-dependent carbohydrate recognition domains and the cysteine-rich domain at the C terminus of MR dimers, presenting a much broader target for potential inhibitors of gp120-MR binding.The mannose receptor (MR)2 is a C-type lectin receptor that is expressed on the surface of a variety of cells, including immature monocyte-derived dendritic cells (MDDC), dermal dendritic cells, macrophages, and hepatic endothelial cells. It is a multifunctional protein, involved in antigen recognition and internalization during the early stages of the innate immune response (1) as well as physiological clearance of the endogenous pituitary hormones lutropin and thyrotropin (2, 3). Recognition of foreign antigens occurs via mannose, fucose, and GlcNAc residues (4, 5), which are generally not found as terminal residues on mammalian glycoproteins but are highly abundant on surface proteins of pathogens such as the HIV-1 envelope gp120 (6, 7). Once bound, pathogens can be internalized by endocytosis or phagocytosis, where they are targeted to lysosomes for proteolytic degradation and presentation on major histocompatibility complex class II (8). In immature DCs, soluble recombinant HIV envelope proteins are processed by this pathway, initially binding to both dendritic cell-specific intracellular adhesion molecule 3 grabbing non-integrin (DC-SIGN) and MR and ultimately co-localizing with MR but not DC-SIGN in lysosomes (9). Furthermore, in immature DCs and to a greater extent mature DCs, a proportion of intact HIV-1 enters a unique vesicular compartment that co-localizes with tetraspanin proteins such as CD81 (10, 11). Recently, this compartment has been shown to be continuous with the plasma membrane (11) and does not represent a continuation of the endolysosomal network. Interestingly, this compartment can translocate virus from DCs to CD4 T cells, upon the formation of a virological synapse (1012). Although viral uptake can occur in DCs independent of HIV env (2), the efficiency of HIV binding and uptake is greatly enhanced by the presence of C-type lectin-env interactions. At least initial binding to DC-SIGN (and most likely also MR) is required for T cell trans-infection (13).Structurally, the extracellular domain of MR consists of an N-terminal cysteine-rich domain (Cys-RD), followed by a fibronectin type II domain and eight carbohydrate recognition domains (CRD) on a single polypeptide backbone (1). Of the eight CRDs, CRD 4–8 have been shown to be required for high affinity binding of ligands containing terminal mannose/fucose/GlcNAc residues, with CRD 4 having demonstrable monosaccharide binding in isolation (14). Binding and release of ligand within the low pH environment of the endolysosomal compartment are also Ca2+-dependent. Acid-induced removal of Ca2+ binding in CRD 4 and 5 was shown to cause a conformational rearrangement of the domain, resulting in a loss of carbohydrate binding activity (15). In contrast, binding of sulfated carbohydrates to the Cys-RD appears to be Ca2+-independent as no Ca2+-binding sites were observed in its crystal structure (2, 16).Oligomerization of CLRs such as DC-SIGN (17), Langerin (18), and mannose-binding protein (19) has been reported to be essential for binding of oligosaccharide-bearing ligands. Early studies on MR suggested that it exists solely as a monomeric molecule and that clustering of multiple CRDs within the single polypeptide backbone was necessary for high affinity binding of oligosaccharide moieties (20). However, more recent studies have shown that dimerization is possible in the presence of Ca2+ (21) and that an equilibrium may exist between monomeric and dimeric forms on the cell surface (22). It is currently unclear what effect dimerization has on ligand binding to the CRDs; however, there is evidence that dimerization of MR is required for high affinity binding of ligands bearing terminal N-acetylgalactosamine 4-sulfate (GalNAc-4-SO4) such as lutropin and thyrotropin (22) to the Cys-RD.To date, studies on the oligomerization and ligand binding activity of MR have used solubilized protein from cell lysates (20) or purified recombinant fragments (21). Because the membrane microenvironment can influence protein associations, soluble forms of MR may not necessarily be a true model of the quaternary structure and function of the native protein. Here, we used a well established method of cross-linking (23) on MDDCs, monocyte-derived macrophages (MDMs), and MR-transfected Rat-6 cells to preserve lateral protein-protein interactions between MR on the cell surface prior to solubilization. Mass spectrometry analysis of affinity-purified complexes showed they were homo-oligomers, and further resolution of the complex on a low percentage polyacrylamide gel by SDS-PAGE strongly indicates that they are dimers. Dimerization of MR was also found to be essential for binding mannan, monomeric gp120, native trimeric gp140, and HIV-1 viral particles. Persistence of monomeric gp120 and trimeric gp140 binding to dimeric MR in the presence of EGTA and various CRD and other inhibitors, however, suggested that gp120-mediated HIV-1 binding is not Ca2+-dependent and that at least binding probably occurs to both Ca2+-dependent and -independent CRDs and also the Cys-RD.  相似文献   
962.
The mitotic spindle is an essential molecular machine for chromosome segregation during mitosis. Achieving a better understanding of its organization at the topological level remains a daunting task. To determine the functional connections among 137 mitotic spindle proteins, a protein–protein interaction network among queries was constructed. Many hub proteins, which connect more than one query and serve as highly plausible candidates for expanding the mitotic spindle proteome, are ranked by conventional degree centrality and a new subnetwork specificity score. Evaluation of the ranking results by literature reviews and empirical verification of SEPT6, a novel top‐ranked hub, suggests that the subnetwork specificity score could enrich for putative spindle‐related proteins. Topological analysis of this expanded network shows the presence of 30 3‐cliques and six 4‐cliques (fully connected subgraphs) that, respectively, reside in eight kinetochore‐associated complexes, of which seven are evolution conserved. Notably, these complexes strikingly form dependence pathways for the assembly of the kinetochore complex. These analyses indicate the feasibility of using network topology, i.e. cliques, to uncover novel pathways to accelerate our understanding of potential biological processes.  相似文献   
963.
Sinomanglietia glauca is a critically endangered species described from Jiangxi Province in the 1990s. Recently two populations were discovered from Yongshun County of west Hunan Province, about 450 km away from those in Jiangxi. Because of the new findings and the poor reproducibility inherent to RAPD and ISSR markers of previous studies, the population structure of this rare species was reanalyzed with chloroplast PCR‐SSCP (single‐stranded conformation polymorphism), including all of four recorded populations. The results showed that two distinct haplotypes characterized Jiangxi and Hunan populations separately, with no genetic variation occurring within regions. We postulated that this surprising pattern might result from habitat fragmentation and demographic bottlenecks during and/or after the Quaternary glaciation. On the basis of the pronounced genetic structure, two evolutionarily significant units (ESUs) were recommended for effective conservation of S. glauca.  相似文献   
964.

Background

Simvastatin has been shown to ameliorate pulmonary hypertension by several mechanisms in experimental animal models. In this study, we hypothesized that the major benefits of simvastatin in pulmonary hypertension occur via the heme oxygenase-1 pathway.

Methods

Simvastatin (10 mg/kgw/day) was tested in two rat models of pulmonary hypertension (PH): monocrotaline administration and chronic hypoxia. The hemodynamic changes, right heart hypertrophy, HO-1 protein expression, and heme oxygenase (HO) activity in lungs were measured in both models with and without simvastatin treatment. Tin-protoporphyrin (SnPP, 20 μmol/kg w/day), a potent inhibitor of HO activity, was used to confirm the role of HO-1.

Results

Simvastatin significantly ameliorated pulmonary arterial hypertension from 38.0 ± 2.2 mm Hg to 22.1 ± 1.9 mm Hg in monocrotaline-induced PH (MCT-PH) and from 33.3 ± 0.8 mm Hg to 17.5 ± 2.9 mm Hg in chronic hypoxia-induced PH (CH-PH) rats. The severity of right ventricular hypertrophy was significantly reduced by simvastatin in MCT-PH and CH-PH rats. Co-administration with SnPP abolished the benefits of simvastatin. Simvastatin significantly increased HO-1 protein expression and HO activity in the lungs of rats with PH; however co-administration of SnPP reduced HO-1 activity only. These observations indicate that the simvastatin-induced amelioration of pulmonary hypertension was directly related to the activity of HO-1, rather than its expression.

Conclusion

This study demonstrated that simvastatin treatment ameliorates established pulmonary hypertension primarily through an HO-1-dependent pathway.  相似文献   
965.
966.
967.
Sans-fille (SNF) is the Drosophila homologue of mammalian general splicing factors U1A and U2B″, and it is essential in Drosophila sex determination. We found that, besides its ability to bind U1 snRNA, SNF can also bind polyuridine RNA tracts flanking the male-specific exon of the master switch gene Sex-lethal (Sxl) pre-mRNA specifically, similar to Sex-lethal protein (SXL). The polyuridine RNA binding enables SNF directly inhibit Sxl exon 3 splicing, as the dominant negative mutant SNF1621 binds U1 snRNA but not polyuridine RNA. Unlike U1A, both RNA recognition motifs (RRMs) of SNF can recognize polyuridine RNA tracts independently, even though SNF and U1A share very high sequence identity and overall structure similarity. As SNF RRM1 tends to self-associate on the opposite side of the RNA binding surface, it is possible for SNF to bridge the formation of super-complexes between two introns flanking Sxl exon 3 or between a intron and U1 snRNP, which serves the molecular basis for SNF to directly regulate Sxl splicing. Taken together, a new functional model for SNF in Drosophila sex determination is proposed. The key of the new model is that SXL and SNF function similarly in promoting Sxl male-specific exon skipping with SNF being an auxiliary or backup to SXL, and it is the combined dose of SXL and SNF governs Drosophila sex determination.  相似文献   
968.
969.
Biosynthesis of salicylic acid in plants   总被引:1,自引:0,他引:1  
Salicylic acid (SA) is an important signal molecule in plants. Two pathways of SA biosynthesis have been proposed in plants. Biochemical studies using isotope feeding have suggested that plants synthesize SA from cinnamate produced by the activity of phenylalanine ammonia lyase (PAL). Silencing of PAL genes in tobacco or chemical inhibition of PAL activity in Arabidopsis, cucumber and potato reduces pathogen-induced SA accumulation. Genetic studies, on the other hand, indicate that the bulk of SA is produced from isochorismate. In bacteria, SA is synthesized from chorismate through two reactions catalyzed by isochorismate synthase (ICS) and isochorismate pyruvate lyase (IPL). Arabidopsis contains two ICS genes but has no gene encoding proteins similar to the bacterial IPL. Thus, how SA is synthesized in plants is not fully elucidated. Two recently identified Arabidopsis genes, PBS3 and EPS1, are important for pathogen-induced SA accumulation. PBS3 encodes a member of the acyl-adenylate/thioester-forming enzyme family and EPS1 encodes a member of the BAHD acyltransferase superfamily. PBS3 and EPS1 may be directly involved in the synthesis of an important precursor or regulatory molecule for SA biosynthesis. The pathways and regulation of SA biosynthesis in plants may be more complicated than previously thought.Key words: salicylic acid biosynthesis, isochorismate synthase, phenylalanine ammonia lyase  相似文献   
970.
Alexandrium is a wide-spread genus of dinoflagellate causing harmful algal blooms and paralytic shellfish poisoning around the world. Proteomics has been introduced to the study of Alexandrium, but the protein preparation method is still unsatisfactory with respect to protein spot number, separation and resolution, and this has limited the application of a proteomic approach to the study of dinoflagellates. In this study we compared four protein preparation methods for the two-dimensional electrophoresis (2DE) analysis of A. tamarense: (1) urea/Triton X-100 buffer extraction with trichloroacetic acid (TCA)/acetone precipitation; (2) direct precipitation with TCA/acetone; (3) 40 mM Tris (hydroxymethyl) aminomethane (Tris) buffer extraction; and (4) 50 mM Tris/5% glycerol buffer extraction. The results showed that, among the four protein preparation methods, the method combining the urea/Triton X-100 buffer extraction and TCA/acetone precipitation allowed detection of the highest number and quality of protein spots with a clear background. Although the direct TCA/acetone precipitation method also detected a high number of protein spots with a clear background, the spot number, separation and intensity were not as good as those obtained from the urea/Triton X-100 buffer extraction with TCA/acetone precipitation method. The 40 mM Tris buffer and 50 mM Tris/5% glycerol buffer methods allowed the detection of fewer protein spots and a pH range only from 4 to 7. Subsequently, the urea/Triton X-100 buffer extraction with TCA/acetone precipitation method was successfully applied to profiling protein expression in A. catenella under light stress conditions and the differential expression proteins were identified using MALDI TOF–TOF mass spectrometry. The method developed here appears to be promising for further proteomic studies of this organism and related species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号