首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113103篇
  免费   1756篇
  国内免费   893篇
  115752篇
  2024年   27篇
  2023年   66篇
  2022年   243篇
  2021年   413篇
  2020年   247篇
  2019年   311篇
  2018年   12217篇
  2017年   10919篇
  2016年   8017篇
  2015年   1689篇
  2014年   1492篇
  2013年   1672篇
  2012年   5966篇
  2011年   14318篇
  2010年   12934篇
  2009年   9006篇
  2008年   10998篇
  2007年   12415篇
  2006年   1297篇
  2005年   1466篇
  2004年   1908篇
  2003年   1780篇
  2002年   1549篇
  2001年   880篇
  2000年   789篇
  1999年   445篇
  1998年   173篇
  1997年   150篇
  1996年   128篇
  1995年   87篇
  1994年   88篇
  1993年   98篇
  1992年   177篇
  1991年   162篇
  1990年   95篇
  1989年   110篇
  1988年   86篇
  1987年   78篇
  1986年   69篇
  1985年   53篇
  1984年   54篇
  1983年   54篇
  1982年   29篇
  1978年   28篇
  1976年   32篇
  1975年   34篇
  1973年   33篇
  1972年   265篇
  1971年   297篇
  1970年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.

Background  

Assessing RNA quality is essential for gene expression analysis, as the inclusion of degraded samples may influence the interpretation of expression levels in relation to biological and/or clinical parameters. RNA quality can be analyzed by agarose gel electrophoresis, UV spectrophotometer, or microcapillary electrophoresis traces, and can furthermore be evaluated using different methods. No generally accepted recommendations exist for which technique or evaluation method is the best choice. The aim of the present study was to use microcapillary electrophoresis traces from the Bioanalyzer to compare three methods for evaluating RNA quality in 24 fresh frozen invasive breast cancer tissues: 1) Manual method = subjective evaluation of the electropherogram, 2) Ratio Method = the ratio between the 28S and 18S peaks, and 3) RNA integrity number (RIN) method = objective evaluation of the electropherogram. The results were also related to gene expression profiling analyses using 27K oligonucleotide microarrays, unsupervised hierarchical clustering analysis and ontological mapping.  相似文献   
992.
Objectives To observe the effect of ultrashortwave (USW) therapy on nerve regeneration after acellular nerve allografts(ANA) repairing the sciatic nerve gap of rats and discuss its acting mechanisms. Methods Sixteen Wistar rats weighing 180–220 g were randomly divided into four groups with four rats in each group: normal control group; acellular group (ANA, treated by hypotonic-chemical detergent, was applied for bridging a 10 mm-long sciatic nerve defect); USW group (After 24 h of ANA repairing the sciatic nerve gap, low dose USW was administrated for 7 min, once a day, 20 times a course of treatment, three courses of treatment in all); and autografts group. 12 weeks after operation, a series of examinations was performed, including electrophysiological methods, the restoring rate of tibialis anterior muscle wet weight, histopathological observation (myelinated nerve number, myelin sheath thickness, and axon diameter), vascular endothelial growth factor (VEGF) mRNA expression of spinal cord, and muscle at injury site, and analyzed statistically. Results Compared to acellular nerve allografts alone, USW therapy can increase nerve conductive velocity, the restoring rate of tibialis anterior muscle wet weight, myelinated nerve number, axon diameter, VEGF mRNA expression of spinal cord, and muscle at injury site, the difference is significant. There were no differences between USW group and autografts group except myelin sheath thickness. Conclusions USW therapy can promote nerve axon regeneration and Schwann cells proliferation after ANA repairing the sciatic nerve gap of rats, the upregulation of VEGF mRNA expression of spinal cord and muscle may play an important role.  相似文献   
993.
Several zebrafish P2X receptors (zP2X(1), zP2X(2), and zP2X(5.1)) have been reported to produce little or no current although their mammalian orthologs produce functional homomeric receptors. We isolated new cDNA clones for these P2X receptors that revealed sequence variations in each. The new variants of zP2X(1) and zP2X(5.1) produced substantial currents when expressed by Xenopus oocytes, however the new variant of zP2X(2) was still nonfunctional. zP2X(2) lacks two lysine residues essential for ATP responsiveness in other P2X receptors; however introduction of these two lysines was insufficient to allow this receptor to function as a homotrimer. We also tested whether P2X signaling is required for myogenesis or synaptic communication at the zebrafish neuromuscular junction. We found that embryonic skeletal muscle expressed only one P2X receptor, P2X(5.1). Antisense knockdown of P2X(5.1) eliminated skeletal muscle responsiveness to ATP but did not prevent myogenesis or behaviors that require functional transmission at the neuromuscular junction.  相似文献   
994.
Rapid prototyping of distributed systems can be achieved by integrating commercial off-the-shelf (COTS) components. With components as the building blocks, it is important to predict the performance of the system based on the performance of individual components. In this paper, performance prediction of a system consisting of a small number of components is investigated under different inter-component communication patterns, and the number of threads provided by components. Based on the experimental results, it can be inferred that the proposed composition rules provide a reasonably accurate prediction of the performance of a system made out of these components.
Barrett R. BryantEmail:
  相似文献   
995.

Background

Thus far, a handful of genes have been shown to be related to the wing maturation process in insects. A novel heme peroxidase enzyme known as curly suppressor (Cysu)(formerly CG5873), have been characterized in this report because it is involved in wing morphogenesis. Using bioinformatics tools we found that Cysu is remarkably conserved in the genus Drosophila (>95%) as well as in invertebrates (>70%), although its vertebrate orthologs show poor homology. Time-lapse imaging and histochemical analyses have confirmed that the defective wing phenotype of Cysu is not a result of any underlying cellular alterations; instead, its wings fail to expand in mature adults.

Results

The precise requirement of Cysu in wings was established by identifying a bona fide mutant of Cysu from the Bloomington Drosophila Stock Centre collection. Its requirement in the wing has also been shown by RNA knockdown of the gene. Subsequent transgenic rescue of the mutant wing phenotype with the wild-type gene confirmed the phenotype resulting from Cysu mutant. With appropriate GAL4 driver like engrailed-GAL4, the Cysu phenotype was compartmentalized, which raises a strong possibility that Cysu is not localized in the extracellular matrix (ECM); hence, Cysu is not engaged in bonding the dorsal and ventral cuticular layers. Finally, shortened lifespan of the Cysu mutant suggests it is functionally essential for other biological processes as well.

Conclusion

Cysu, a peroxinectin-like gene, is required during the wing maturation process in Drosophila because as a heme peroxidase, Cysu is capable of utilizing H2O2, which plays an essential role in post-eclosion wing morphogenesis.
  相似文献   
996.
Living cells orient the cytoskeleton polarity and directional migration in response to spatial gradients of multiple types of cues. The resulting tactic behaviors are critical for the proper cell localization in the context of complex single-cell and tissue behaviors. In this perspective, we highlight the recent discovery of, to our knowledge, a new -taxis phenomenon, the topotaxis, which mediates directional cell migration in response to the gradients of such topographic features as the density of extracellular matrix fibers. The direction of topotactic migration critically depends on the effective stiffness of the cortical cytoskeleton, which is controlled by the balance between two parallel signaling pathways activated by the extracellular matrix input. Topotaxis can account for such striking cell behaviors as the opposite directionality of migration of benign and metastatic cancer cells and certain aspects of the wound-healing process. We anticipate that, in conjunction with other tactic phenomena, topotaxis can provide critical information for understanding and design of tissue structure and function.  相似文献   
997.
Peatlands are important carbon reserves in terrestrial ecosystems. The microtopography of a peatland area has a strong influence on its carbon balance, determining carbon fluxes at a range of spatial scales. These patterned surfaces are very sensitive to changing climatic conditions. There are open research questions concerning the stability, behaviour and transformation of these microstructures, and the implications of these changes for the long-term accumulation of organic matter in peatlands. A simple two-dimensional peat microtopographical model was developed, which accounts for the effects of microtopographical variations and a dynamic water table on competitive interactions between peat-forming plants. In a case study of a subarctic mire in northern Sweden, we examined the consequences of such interactions on peat accumulation patterns and the transformation of microtopographical structure. The simulations demonstrate plausible interactions between peatland growth, water table position and microtopography, consistent with many observational studies, including an observed peat age profile from the study area. Our model also suggests that peatlands could exhibit alternative compositional and structural dynamics depending on the initial topographical and climatic conditions, and plant characteristics. Our model approach represents a step towards improved representation of peatland vegetation dynamics and net carbon balance in Earth system models, allowing their potentially important implications for regional and global carbon balances and biogeochemical and biophysical feedbacks to the atmosphere to be explored and quantified.  相似文献   
998.
The introduction of non-indigenous species (NIS) in new environments represents a major threat for coastal ecosystems. A good understanding of the mechanisms and magnitude of the impact of NIS colonisation on native ecosystems is becoming increasingly crucial to develop mitigation measures and prevent new invasions. In this present study, we asked if distinct coastal benthic communities from an oceanic island can have different vulnerability to NIS colonisation process. First, PVC settlement plates were deployed for 1 year on the rocky shore of two different locations of Madeira Island (North versus South coast). Then, we implemented a mesocosm experiment where recruited plate communities were maintained under different levels of NIS propagule pressure in order to assess their vulnerability to NIS colonisation process. Results showed that NIS colonisation success was not influenced by the level of propagule pressure, but however, final colonisation patterns varied depending on the origin of the communities. This variability can be attributed to major structural differences between the preponderant species of each community and therefore to the biotic substrate they offer to colonisers. This study highlights how biotic features can alter the NIS colonisation process and importantly, shows that in an urbanisation context, the nature of the resident communities facing invasions risks needs to be closely assessed.  相似文献   
999.
1000.
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号