首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15634篇
  免费   1388篇
  国内免费   1571篇
  2024年   26篇
  2023年   192篇
  2022年   498篇
  2021年   858篇
  2020年   651篇
  2019年   744篇
  2018年   711篇
  2017年   523篇
  2016年   671篇
  2015年   994篇
  2014年   1150篇
  2013年   1276篇
  2012年   1528篇
  2011年   1284篇
  2010年   789篇
  2009年   759篇
  2008年   818篇
  2007年   690篇
  2006年   605篇
  2005年   550篇
  2004年   397篇
  2003年   397篇
  2002年   357篇
  2001年   243篇
  2000年   208篇
  1999年   238篇
  1998年   134篇
  1997年   144篇
  1996年   137篇
  1995年   120篇
  1994年   116篇
  1993年   88篇
  1992年   96篇
  1991年   74篇
  1990年   82篇
  1989年   61篇
  1988年   58篇
  1987年   43篇
  1986年   50篇
  1985年   50篇
  1984年   33篇
  1983年   21篇
  1982年   22篇
  1981年   11篇
  1980年   10篇
  1979年   16篇
  1978年   6篇
  1977年   12篇
  1976年   9篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 713 毫秒
991.
A procedure has been developed for protein identification using mass spectrometry (MS) that incorporates sample cleanup, preconcentration, and protein digestion in a single-stage system. The procedure involves the adsorption of a protein, or protein mixture, from solution onto a hydrophobic resin that is contained within a microcolumn. Sample loading is accomplished by flowing the protein solution through the microcolumn, where the protein adsorbs to the hydrophobic surface. The protein is digested while still bound to the hydrophobic surface by flowing a buffered trypsin solution through the column bed. The peptide fragments are subsequently eluted for detection by MALDI or ESI-MS. The procedure is demonstrated using dilute protein samples containing high concentrations of salt, urea, and modest amount of sodium dodecyl sulfate relative to protein. Peptide fragments are also detected by MS from a 500 nM bacteriorhodopsin solution digested in a microcolumn. In this case, a combined cyanogen bromide/trypsin digestion was performed in-column. The procedure is applied to the MALDI-MS/MS identification of proteins present in an individual fraction collected by ion exchange HPLC separation of E. coli total cell extract. An additional application is illustrated in the analysis of a human plasma fraction. A total of 14 proteins, which were present in the sample at sub-micromolar concentrations, were identified from ESI-MS/MS. The microcolumn digestion procedure represents the next step toward a system for fully automated protein analysis through capture and digestion of the adsorbed protein on hydrophobic surfaces.  相似文献   
992.
HPLC fractionation combined with mass spectrometry can become a powerful tool for analyzing the proteome in the mass range below 15 kDa where efficient protein separation by gel electrophoresis can be difficult. For sensitive and high-resolution separation of the low-mass proteome, the use of analytical rather than preparative HPLC columns is preferred. However, individual fractions collected by a conventional HPLC separation usually contain a small amount of proteins whose concentrations may not be sufficiently high for subsequent enzyme digestion and protein identification by mass spectrometry. In this work, we present a high sensitivity nanoliter sample handling technique to analyze proteins fractionated by HPLC. In this technique, an individual HPLC fraction in hundreds of microliter volume is pre-concentrated to several microliters. About 700 pl of the pre-concentrated fraction is then drawn into a 20-microm I.D. capillary and dried in a small region near the capillary's entrance. This process can be repeated many times to concentrate a sufficient amount of protein to the small region of the capillary. After protein concentration, protein digestion is achieved by drawing 1 nl of chemical or enzymatic reagent into the capillary and placing it in the same region where the dried protein sits. The resulting peptides are then deposited onto a microspot in a MALDI probe for mass analysis. The performance of this technique is demonstrated with the use of a standard protein solution. This technique is applied to the identification of low-mass proteins separated by HPLC from a complex mixture of an E. coli extract.  相似文献   
993.
994.
Thermophilic organisms must be capable of accurate translation at temperatures in which the individual components of the translation machinery and also specific amino acids are particularly sensitive. Thermus thermophilus is a good model organism for studies of thermophilic translation because many of the components in this process have undergone structural and biochemical characterization. We have focused on the pathways of aminoacyl-tRNA synthesis for glutamine, asparagine, proline, and cysteine. We show that the T. thermophilus prolyl-tRNA synthetase (ProRS) exhibits cysteinyl-tRNA synthetase (CysRS) activity although the organism also encodes a canonical CysRS. The ProRS requires tRNA for cysteine activation, as is known for the characterized archaeal prolyl-cysteinyl-tRNA synthetase (ProCysRS) enzymes. The heterotrimeric T. thermophilus aspartyl-tRNA(Asn) amidotransferase can form Gln-tRNA in addition to Asn-tRNA: however, a 13-amino-acid C-terminal truncation of the holoenzyme A subunit is deficient in both activities when assayed with homologous substrates. A survey of codon usage in completed prokaryotic genomes identified a higher Glu:Gln ratio in proteins of thermophiles compared to mesophiles.  相似文献   
995.
A new series of dihydropyridine derivatives, bearing oxypropanolamine moiety on phenyl ring at the 4-position of the dihydropyridine base, were prepared. Oxypropanolamine was synthesized by replacing the phenolic OH of vanillin or other compounds, having a phenyl aldehyde group, with epichlorohydrin, followed by cleavaging the obtained epoxide compounds with tert-butylamine, n-butylamine or 2-methoxy-1-oxyethylamino benzene (guaiacoxyethylamine), respectively. Obtained various oxypropanolamine compounds, still remaining a phenyl aldehyde moiety, were then performed by Hantzsch condensation reaction with methylacetoacetate or ethylacetoacetate, respectively, to give our new series of dihydropyridine linked with the 4-phenyl ring. These compounds were evaluated for inotropic, chronotropic, and aorta contractility that associated with calcium channel and adrenoceptor antagonist activities. Dihydropyridine derivatives that with oxypropanolamine side chain on their 4-phenyl ring associated alpha-/beta-adrenoceptor blocking activities created a new family of calcium entry and the third generation beta-adrenoceptor blockers. Optimizing this research to obtain more potent alpha-/beta-adrenoceptor blocking and long-acting antihypertensive oxypropanolamine on the 4-phenyl ring of dihydropyridine series compounds was thus accomplished and classified as third generation dihydropyridine type calcium channel blockers, in comparison with previous short-acting type nifedipine and long-acting type amlodipine. We concluded that compounds 1a, 1b and 1g showed not only markedly high calcium-antagonistic activity but also the highest antihypertensive effect; compounds 1b, 1c, 1f, 1g, 1i and 1j induced sustained antihypertensive effects are major and attributed to their calcium entry and alpha-adrenoceptor blocking activities in the blood vessel due to their introduction of 2-methoxy, 1-oxyethylamino benzene moiety in the side chain on the 4-phenyl ring of dihydropyridine. Bradycardiac effects of all the compounds 1a-1j resulted from calcium entry and beta-adrenoceptor blocking, which attenuate the sympathetic activation-associated reflex tachycardia in the heart. We selected compound 1b as candidate compound for further pharmacological and pre-clinical evaluation studies.  相似文献   
996.
997.
PKCs have been implicated in the regulation of cellular differentiation, proliferation, apoptosis and signal transduction. It was demonstrated in this study that PKCα was located both at mitochondria and in cytosol in gastric cancer cell line BGC-823. Treatment of cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in the translocation of PKCα from both mitochondria and cytosol to nucleus as clearly shown by laserscanningconfocal microscopy, while the protein level of PKCα was not changed by TPA treatment as detected by Western blot. The results also revealed that TPA-induced translocation of PKCα was in close association with apoptosis induction, and such association was further affirmed by other experiments where various apoptotic stimuli and specific inhibitors of PKC were used. Taken together, these findings indicate that translocation of PKCα from both mitochondria and cytosol to nucleus in gastric cancer cell is accompanied by induction of apoptosis, and may imply a new mechanism of the potential linking between cell apoptosis and PKCα translocation.  相似文献   
998.
A so-called "green protein" has been purified from a moderate halophilic eubacterium, Bacillus halodenitrificans (ATCC 49067), under anaerobic conditions. The protein, which might play an important role in denitrification, dissociates mainly into two components after exposure to air: a manganese superoxide dismutase (GP-MnSOD) and a nucleoside diphosphate kinase. As a first step in elucidating the overall structure of the green protein and the role of each component, the 2.8-A resolution crystal structure of GP-MnSOD was determined. Compared with other manganese dismutases, GP-MnSOD shows two significant characteristics. The first is that the entrance to its substrate channel has an additional basic residue-Lys38. The second is that its surface is decorated with an excess of acidic over basic residues. All these structural features may be related to GP-MnSOD's high catalytic activity and its endurance against the special cytoplasm of B. halodenitrificans. The structure of GP-MnSOD provides the basis for recognizing its possible role and assembly state in the green protein.  相似文献   
999.
1000.
The p38 MAP kinase plays a crucial role in regulating the production of proinflammatory cytokines, such as tumor necrosis factor and interleukin-1. Blocking this kinase may offer an effective therapy for treating many inflammatory diseases. Here we report a new allosteric binding site for a diaryl urea class of highly potent and selective inhibitors against human p38 MAP kinase. The formation of this binding site requires a large conformational change not observed previously for any of the protein Ser/Thr kinases. This change is in the highly conserved Asp-Phe-Gly motif within the active site of the kinase. Solution studies demonstrate that this class of compounds has slow binding kinetics, consistent with the requirement for conformational change. Improving interactions in this allosteric pocket, as well as establishing binding interactions in the ATP pocket, enhanced the affinity of the inhibitors by 12,000-fold. One of the most potent compounds in this series, BIRB 796, has picomolar affinity for the kinase and low nanomolar inhibitory activity in cell culture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号