首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32014篇
  免费   2692篇
  国内免费   638篇
  2023年   158篇
  2022年   378篇
  2021年   717篇
  2020年   460篇
  2019年   618篇
  2018年   769篇
  2017年   603篇
  2016年   1020篇
  2015年   1589篇
  2014年   1796篇
  2013年   2074篇
  2012年   2560篇
  2011年   2504篇
  2010年   1622篇
  2009年   1270篇
  2008年   1821篇
  2007年   1645篇
  2006年   1524篇
  2005年   1391篇
  2004年   1355篇
  2003年   1182篇
  2002年   1024篇
  2001年   902篇
  2000年   806篇
  1999年   676篇
  1998年   313篇
  1997年   286篇
  1996年   244篇
  1995年   218篇
  1994年   198篇
  1993年   151篇
  1992年   329篇
  1991年   299篇
  1990年   248篇
  1989年   265篇
  1988年   218篇
  1987年   181篇
  1986年   168篇
  1985年   191篇
  1984年   136篇
  1983年   114篇
  1982年   103篇
  1981年   109篇
  1979年   119篇
  1978年   108篇
  1977年   79篇
  1976年   74篇
  1975年   101篇
  1974年   100篇
  1973年   82篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor– and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2.  相似文献   
992.
Centriole duplication begins with the formation of a single procentriole next to a preexisting centriole. CPAP (centrosomal protein 4.1–associated protein) was previously reported to participate in centriole elongation. Here, we show that CEP120 is a cell cycle–regulated protein that directly interacts with CPAP and is required for centriole duplication. CEP120 levels increased gradually from early S to G2/M and decreased significantly after mitosis. Forced overexpression of either CEP120 or CPAP not only induced the assembly of overly long centrioles but also produced atypical supernumerary centrioles that grew from these long centrioles. Depletion of CEP120 inhibited CPAP-induced centriole elongation and vice versa, implying that these proteins work together to regulate centriole elongation. Furthermore, CEP120 was found to contain an N-terminal microtubule-binding domain, a C-terminal dimerization domain, and a centriolar localization domain. Overexpression of a microtubule binding–defective CEP120-K76A mutant significantly suppressed the formation of elongated centrioles. Together, our results indicate that CEP120 is a CPAP-interacting protein that positively regulates centriole elongation.  相似文献   
993.
994.
Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ13-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders.  相似文献   
995.
The use of nicotinic acid to treat dyslipidemia is limited by induction of a “flushing” response, mediated in part by the interaction of prostaglandin D2 (PGD2) with its G-protein coupled receptor, DP1 (Ptgdr). The impact of DP1 blockade (genetic or pharmacologic) was assessed in experimental murine models of atherosclerosis. In Ptgdr−/−ApoE−/− mice versus ApoE−/− mice, both fed a high-fat diet, aortic cholesterol content was modestly higher (1.3- to 1.5-fold, P < 0.05) in Ptgdr−/−ApoE−/− mice at 16 and 24 weeks of age, but not at 32 weeks. In multiple ApoE−/− mouse studies, a DP1-specific antagonist, L-655, generally had a neutral to beneficial effect on aortic lipids in the presence or absence of nicotinic acid treatment. In a separate study, a modest increase in some atherosclerotic measures was observed with L-655 treatment in Ldlr−/− mice fed a high-fat diet for 8 weeks; however, this effect was not sustained for 16 or 24 weeks. In the same study, treatment with nicotinic acid alone generally decreased plasma and/or aortic lipids, and addition of L-655 did not negate those beneficial effects. These studies demonstrate that inhibition of DP1, with or without nicotinic acid treatment, does not lead to consistent or sustained effects on plaque burden in mouse atherosclerotic models.  相似文献   
996.
The breakthrough in derivation of human‐induced pluripotent stem cells (hiPSCs) provides an approach that may help overcome ethical and allergenic challenges posed in numerous medical applications involving human cells, including neural stem/progenitor cells (NSCs). Considering the great potential of NSCs in targeted cancer gene therapy, we investigated in this study the tumor tropism of hiPSC‐derived NSCs and attempted to enhance the tropism by manipulation of biological activities of proteins that are involved in regulating the migration of NSCs toward cancer cells. We first demonstrated that hiPSC‐NSCs displayed tropism for both glioblastoma cells and breast cancer cells in vitro and in vivo. We then compared gene expression profiles between migratory and non‐migratory hiPSC‐NSCs toward these cancer cells and observed that the gene encoding neuronal nitric oxide synthase (nNOS) was down‐regulated in migratory hiPSC‐NSCs. Using nNOS inhibitors and nNOS siRNAs, we demonstrated that this protein is a relevant regulator in controlling migration of hiPSC‐NSCs toward cancer cells, and that inhibition of its activity or down‐regulation of its expression can sensitize poorly migratory NSCs and be used to improve their tumor tropism. These findings suggest a novel application of nNOS inhibitors in neural stem cell‐mediated cancer therapy.  相似文献   
997.
Energy failure and oxidative stress have been implicated in the pathogenesis of ischemia. Here, we report a potential link between cytosolic phospholipase A2 (cPLA2) activation and energy failure/oxidative stress‐induced astrocyte damage involving reactive oxygen species (ROS), protein kinase C‐α (PKC‐α), Src, Raf, and extracellular signal‐regulated kinase (ERK) signaling and concurrent elevation of endogenous chelatable zinc. Energy failure and oxidative stress were produced by treating astrocytes with glycolytic inhibitor iodoacetate and glutathione chelator diethylmaleate, respectively. Diethylmaleate and iodoacetate in combination caused augmented damage to astrocytes in a time‐ and concentration‐dependent manner. The cell death caused by diethylmaleate/iodoacetate was accompanied by increased ROS generation, PKC‐α membrane translocation, Src, Raf, ERK, and cPLA2 phosphorylation. Pharmacological studies revealed that these activations all contributed to diethylmaleate/iodoacetate‐induced astrocyte death. Intriguingly, the mobilization of endogenous chelatable zinc was observed in diethylmaleate/iodoacetate‐treated astrocytes. Zinc appears to act as a downstream mediator in response to diethylmaleate/iodoacetate treatment because of the attenuating effects of its chelator N,N,N′,N′‐tetrakis(2‐pyridylmethyl)ethylenediamine. These observations indicate that ROS/PKC‐α, Src/Raf/ERK signaling and cPLA2 are active participants in diethylmaleate/iodoacetate‐induced astrocyte death and contribute to a vicious cycle between the depletion of ATP/glutathione and the mobilization of chelatable zinc as critical upstream effectors in initiating cytotoxic cascades.

  相似文献   

998.
One of the most widely accepted ideas related to the evolutionary rates of proteins is that functionally important residues or regions evolve slower than other regions, a reasonable outcome of which should be a slower evolutionary rate of the proteins with a higher density of functionally important sites. Oddly, the role of functional importance, mainly measured by essentiality, in determining evolutionary rate has been challenged in recent studies. Several variables other than protein essentiality, such as expression level, gene compactness, protein–protein interactions, etc., have been suggested to affect protein evolutionary rate. In the present review, we try to refine the concept of functional importance of a gene, and consider three factors—functional importance, expression level, and gene compactness, as independent determinants of evolutionary rate of a protein, based not only on their known correlation with evolutionary rate but also on a reasonable mechanistic model. We suggest a framework based on these mechanistic models to correctly interpret the correlations between evolutionary rates and the various variables as well as the interrelationships among the variables.  相似文献   
999.
Calmodulin (CaM) is an important regulator of Kv7.x (KCNQx) voltage-gated potassium channels. Channels from this family produce neuronal M currents and cardiac and auditory IKS currents and harbor mutations that cause arrhythmias, epilepsy, and deafness. Despite extensive functional characterization, biochemical and structural details of the interaction between CaM and the channel have remained elusive. Here, we show that both apo-CaM and Ca2 +/CaM bind to the C-terminal tail of the neuronal channel Kv7.4 (KCNQ4), which is involved in both hearing and mechanosensation. Interactions between apo-CaM and the Kv7.4 tail involve two C-terminal tail segments, known as the A and B segments, whereas the interaction between Ca2 +/CaM and the Kv7.4 C-terminal tail requires only the B segment. Biochemical studies show that the calcium dependence of the CaM:B segment interaction is conserved in all Kv7 subtypes. X-ray crystallographic determination of the structure of the Ca2 +/CaM:Kv7.4 B segment complex shows that Ca2 +/CaM wraps around the Kv7.4 B segment, which forms an α-helix, in an antiparallel orientation that embodies a variation of the classic 1-14 Ca2 +/CaM interaction motif. Taken together with the context of prior studies, our data suggest a model for modulation of neuronal Kv7 channels involving a calcium-dependent conformational switch from an apo-CaM form that bridges the A and B segments to a Ca2 +/CaM form bound to the B-helix. The structure presented here also provides a context for a number of disease-causing mutations and for further dissection of the mechanisms by which CaM controls Kv7 function.  相似文献   
1000.
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号