首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24716篇
  免费   2255篇
  国内免费   644篇
  27615篇
  2023年   152篇
  2022年   374篇
  2021年   594篇
  2020年   398篇
  2019年   502篇
  2018年   602篇
  2017年   513篇
  2016年   818篇
  2015年   1286篇
  2014年   1431篇
  2013年   1653篇
  2012年   1952篇
  2011年   1925篇
  2010年   1246篇
  2009年   985篇
  2008年   1360篇
  2007年   1262篇
  2006年   1161篇
  2005年   1056篇
  2004年   934篇
  2003年   892篇
  2002年   777篇
  2001年   586篇
  2000年   521篇
  1999年   479篇
  1998年   246篇
  1997年   223篇
  1996年   196篇
  1995年   180篇
  1994年   159篇
  1993年   130篇
  1992年   251篇
  1991年   254篇
  1990年   206篇
  1989年   221篇
  1988年   195篇
  1987年   153篇
  1986年   147篇
  1985年   176篇
  1984年   129篇
  1983年   99篇
  1982年   92篇
  1981年   97篇
  1979年   109篇
  1978年   91篇
  1977年   71篇
  1976年   69篇
  1975年   89篇
  1974年   90篇
  1973年   81篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
A chemically defined medium (CC-494) was used to study the nutritional requirements of three spiroplasmas representing three distinct serogroups: flower spiroplasmas [Spiroplasma floricola and FS (SR-3)] and honeybee spiroplasma [HBS (AS-576)]. Glucose, fructose, and mannose were utilized by all three spiroplasmas. In addition, the honeybee spiroplasma could ferment trehalose, FS (SR-3) could ferment sucrose, and S. floricola could ferment trehalose, sucrose, and raffinose. The three spiroplasmas varied greatly in their requirements of amino acids for growth. S. floricola was the only strain that utilized arginine. HBS (AS-576) required at least one purine and one pyrimidine base (either free base or ribonucleoside) for growth, while both flower spiroplasmas grew with only one base in the medium. Oleic acid, cholesterol, and bovine serum albumin were essential to all three spiroplasmas. Palmitic acid, which was nonessential, promoted growth significantly.  相似文献   
122.
Purification and characterization of yeast topoisomerase I   总被引:2,自引:0,他引:2  
Yeast topoisomerase I (Mr = 76,000) has been purified to 80% homogeneity using a combination of ion exchange, gel filtration, and DNA-cellulose chromatography. The enzyme was characterized with respect to its ability to relax supercoiled DNA and to catenate nicked circular DNA. Yeast topoisomerase I will remove both positive and negative turns in DNA supercoils in the absence of ATP and magnesium ion. The products of the catenating activity of the enzyme were examined on agarose gels and in the electron microscope. These analyses indicate that yeast topoisomerase I will generate large catenated DNA networks which appear to rearrange to multimeric linear structures upon long incubation time.  相似文献   
123.
Polypeptide structure of DNA polymerase I from Saccharomyces cerevisiae   总被引:4,自引:0,他引:4  
DNA polymerase I of the yeast Saccharomyces cerevisiae has been purified to near homogeneity. The enzyme sediments under high salt conditions as a band at 7.4 S and two polypeptides of Mr = 140,000 and 110,000 are resolved by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Both polypeptides react with rabbit anti-yeast DNA polymerase I serum and can be shown to be enzymatically active by renaturation in situ after electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. This high molecular weight form of yeast DNA polymerase I is very sensitive to inhibition by aphidicolin. The biochemical properties of the enzyme and inhibitors that may aid in distinguishing yeast DNA polymerases I and II are also described.  相似文献   
124.
Specific 125I-CCK receptor binding was significantly increased in brain tissue taken from guinea pig or mouse following chronic (2-3 week) daily administration of haloperidol (2-3 mg/kg/day). Scatchard analysis indicated the increase in CCK binding was due to an increased receptor number (B max) with no change in affinity (Kd). In guinea pigs, the increased CCK binding was observed in the mesolimbic regions and frontal cortex, but not in striatum, hippocampus nor posterior cortex. In mice, however, the increases occurred in both pooled cerebral cortical-hippocampal tissue, and in the remainder of the brain. Enhanced CCK receptor binding was also observed in membranes prepared from whole brain of mice one month following intracisternal injection of 6-hydroxydopamine. Additionally, an increase in CCK binding was observed in mesolimbic regions and frontal cortex, but not striatum or hippocampus, of guinea pigs 3 weeks after an unilateral radiofrequency lesions of the ipsilateral ventral tegmentum. The present studies demonstrate that three different procedures which reduce dopaminergic function in the brain enhance CCK receptor binding. The data provide further support for a functional interrelationship between dopaminergic systems and CCK in some brain regions and raise the possibility that CCK may play a role in the antipsychotic action of neuroleptics.  相似文献   
125.
The interaction between deoxyguanosine (dG) and cis-dichlorodiammineplatinum(II) (cis-Pt) leads to the 2:1 and the 1:1 dG-Pt adducts. These adducts were separated on an Aminex A6 cationexchange column by use ot 0.01 M K2CO3 (pH 11) as an eluent. The stoichiometry of the adducts was determined from the 195mPt radioactivity and from the absorbance of the guanine chromophore at 280 nm. Time-course studies show that dG reacts initially with cis-Pt to form the 1:1 adduct, which then interacts with a second molecule of dG to form the 2:1 adduct. Acid hydrolysis (100°C in 88% formic acid for 5–15 min) of the 1:1 and 2:1 adducts results in their conversion to two new products, which elute differently from the column but which still contain Pt bound in the same stoichiometric ratio to dG as in the nonhydrolyzed adducts. The hydrolyzed adducts show a negative diphenylamine reaction indicative ot cleavage of the glycosidic bond. It is concluded that mild acid hydrolysis converts the 1:1 and 2:1 dG-Pt adducts into the corresponding guanine-Pt adducts, which are chromatographically distinguishable. This acid hydrolysis-high pressure liquid chromatography (HPLC) procedure has application to the identification of the Pt adducts formed in DNA.  相似文献   
126.
Purified adenosine kinase from L1210 cells displayed substrate inhibition by high concentrations of adenosine (Ado), ATP, and MgCl2. When incubated with ATP and MgCl2, the enzyme was phosphorylated, and the phosphorylated kinase transferred phosphate to adenosine in the absence of ATP and MgCl2. Substrate binding, isotope exchange, and kinetic studies suggested that the enzyme catalyzes the reaction by means of a two-site ping-pong mechanism with the phosphorylated enzyme as an obligatory intermediate. Among many possible pathways within this mechanism probably a random-bi ordered-bi route is the preferred sequence in which the two substrates, adenosine and MgATP, bind in a random order to form the ternary complex MgATP . E . Ado followed by the sequential dissociation of MgADP and AMP. Dissociation constants of various enzyme-substrate and enzyme-product complexes and the first-order rate constant of the rate-limiting step were estimated.  相似文献   
127.
128.
The first complete sequence of the variable region of a kappa-light chain (V kappa) from a mouse anti-(streptococcal group A polysaccharide) antibody (immunoglobulin 7S34.1) is reported. Immunoglobulin 7S34.1 was isolated from the ascitic fluid of hybridoma 7S34.1 previously cloned in vitro. A newly developed technique for the isolation of peptides by using pre-column formation of peptide derivatives with dimethylaminoazobenzene isothiocyanate also served to complete the sequence. The sequence of the variable region of the kappa-light chain of immunoglobulin 7S34.1 defines a new mouse V kappa isotype (V kappa 27) and is the first mouse immunoglobulin light-chain variable region to be shown to have an extra cysteine residue at position 48.  相似文献   
129.
Genetic and biochemical experiments have enabled us to more clearly distinguish three genetic loci, emtA, emtB, and emtC, all of which can be altered to give rise to resistance to the protein synthesis inhibitor, emetine, in cultured Chinese hamster cells. Genetic experiments have demonstrated that, unlike the emtB locus, neither the emtA locus nor the emtC locus is linked to chromosome 2 in Chinese hamster cells, clearly distinguishing the latter two genes from emtB. emtA mutants can also be distinguished, biochemically, from emtB and emtC mutants based upon different degrees of cross-resistance to another inhibitor of protein synthesis, cryptopleurine. Two-dimensional gel electrophoretic analysis of ribosomal proteins failed to detect any electrophoretic alterations in ribosomal proteins from emtA or emtC mutants that could be correlated with emetine resistance. However, a distinct electrophoretic alteration in ribosomal protein S14 was observed in an emtB mutant. In addition, the parental Chinese hamster peritoneal cell line of an emtC mutant, and the emtC mutant itself, are apparently heterozygous for an electrophoretic alteration in ribosomal protein L9.  相似文献   
130.
Two genes, MF alpha 1 and MF alpha 2, coding for the alpha-factor in yeast Saccharomyces cerevisiae were identified by in situ colony hybridization of synthetic probes to a yeast genomic library. The probes were designed on the basis of the known amino acid sequence of the tridecapeptide alpha-pheromone. The nucleotide sequence revealed that the two genes, though similar in their overall structure, differ from each other in several striking ways. MF alpha 1 gene contains 4 copies of the coding sequence for the alpha-factor, which are separated by 24 nucleotides encoding the octapeptide Lys-Arg-Glu-Ala-Glu(or Asp)-Ala-Glu-Ala. The first alpha-factor coding block is preceded by a sequence for the hexapeptide Lys-Arg-Glu-Ala and 83 additional amino acids. MF alpha 2 gene contains coding sequences for two copies of the alpha-factor that differ from each other and from alpha-factor encoded by MF alpha 1 gene by a Gln leads to Asn and a Lys leads to Arg substitution. The first copy of the alpha-factor is preceded by a sequence coding for 87 amino acids which ends with Lys-Arg-Glu-Ala-Val-Ala-Asp-Ala. The coding blocks of the two copies of the pheromone are separated by the sequence for Lys-Arg-Glu-Ala-Asn-Ala-Asp-Ala. Thus, the alpha-factor can be derived from 2 different precursor proteins of 165 and 120 amino acids containing, respectively, 4 and 2 copies of the pheromone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号