首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77127篇
  免费   18943篇
  国内免费   3216篇
  2023年   500篇
  2022年   1163篇
  2021年   2296篇
  2020年   3370篇
  2019年   5223篇
  2018年   5364篇
  2017年   5242篇
  2016年   5897篇
  2015年   6759篇
  2014年   6882篇
  2013年   7797篇
  2012年   6140篇
  2011年   5646篇
  2010年   5530篇
  2009年   3897篇
  2008年   3375篇
  2007年   2775篇
  2006年   2562篇
  2005年   2406篇
  2004年   2158篇
  2003年   1986篇
  2002年   1798篇
  2001年   1321篇
  2000年   1154篇
  1999年   1007篇
  1998年   541篇
  1997年   480篇
  1996年   452篇
  1995年   389篇
  1994年   336篇
  1993年   256篇
  1992年   434篇
  1991年   424篇
  1990年   347篇
  1989年   335篇
  1988年   307篇
  1987年   262篇
  1986年   220篇
  1985年   265篇
  1984年   182篇
  1983年   159篇
  1982年   125篇
  1981年   130篇
  1979年   151篇
  1978年   123篇
  1977年   93篇
  1976年   86篇
  1975年   119篇
  1974年   112篇
  1973年   98篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions.  相似文献   
152.
During the Audouin's Gull's breeding season at the Ebro Delta in 1993, 24 fresh eggs from eight three-egg clutches (modal clutch-size) were collected at the peak of the laying period. Eggs were processed to obtain formalin-fixed yolks, which were halved and stained using the potassium dichromate method. Digitized images of the yolks were examined to assess the daily rates of yolk deposition. We used these data in combination with egg compositional analysis to build a model of energy demands during the formation of an average clutch in Audouin's Gull. To show how the different parameters of clutch formation affect the daily energy investment peak, we performed a simulation analysis in which the rapid yolk development (RYD) period, the follicle triggering interval (FTI), the laying interval (LI) and the albumen synthesis period (ASP) were allowed to vary simultaneously. In our sample, the mean RYD period was seven days with a range from six to eight days. There were no significant differences in yolk volume among eggs in a clutch, but albumen volume was significantly smaller in third eggs. According to our model the albumen synthesis of the a-egg coincides with the energy demand peak for clutch formation. This peak represents an increase by ca. 42% in female energy requirements. Values obtained from the simulation analysis showed that only the ASP of the a-egg and the RYD durations of the second and third follicles produced noticeable reductions in peak energy investment. We predict that in gulls, whose laying intervals seem to be kept constant, significant increases of the durations of the RYD periods of second and third eggs, or even significant reductions of yolk size of these eggs, may operate simultaneously to match the energy demands during clutch formation to the prevailing food conditions.  相似文献   
153.
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.  相似文献   
154.
155.
The detection of sequence variation with restriction fragment length polymorphisms is advancing our knowledge of plant genetics on several fronts. In the past year, there has been progress in genetic map construction, phylogeny studies, and the dissection of multigenic traits. In addition, new methods that are independent of restriction sites are being developed for polymorphism detection.  相似文献   
156.
157.
How morphology changes with size can have profound effects on the life history and ecology of an animal. For apex predators that can impact higher level ecosystem processes, such changes may have consequences for other species. Tiger sharks (Galeocerdo cuvier) are an apex predator in tropical seas, and, as adults, are highly migratory. However, little is known about ontogenetic changes in their body form, especially in relation to two aspects of shape that influence locomotion (caudal fin) and feeding (head shape). We captured digital images of the heads and caudal fins of live tiger sharks from Southern Florida and the Bahamas ranging in body size (hence age), and quantified shape of each using elliptical Fourier analysis. This revealed changes in the shape of the head and caudal fin of tiger sharks across ontogeny. Smaller juvenile tiger sharks show an asymmetrical tail with the dorsal (upper) lobe being substantially larger than the ventral (lower) lobe, and transition to more symmetrical tail in larger adults, although the upper lobe remains relatively larger in adults. The heads of juvenile tiger sharks are more conical, which transition to relatively broader heads over ontogeny. We interpret these changes as a result of two ecological transitions. First, adult tiger sharks can undertake extensive migrations and a more symmetrical tail could be more efficient for swimming longer distances, although we did not test this possibility. Second, adult tiger sharks expand their diet to consume larger and more diverse prey with age (turtles, mammals, and elasmobranchs), which requires substantially greater bite area and force to process. In contrast, juvenile tiger sharks consume smaller prey, such as fishes, crustaceans, and invertebrates. Our data reveal significant morphological shifts in an apex predator, which could have effects for other species that tiger sharks consume and interact with. J. Morphol. 277:556–564, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
158.
159.
The rostrum of most ziphiids (beaked whales) displays bizarre swollen regions, accompanied with extreme hypermineralisation and an alteration of the collagenous mesh of the bone. The functional significance of this specialization remains obscure. With the voluminous and dense hemispheric excrescence protruding from the premaxillae, the recently described fossil ziphiid Globicetus hiberus is the most spectacular case. This study describes the histological structure and interprets the growth pattern of this unique feature. Histologically, the prominence in Globicetus is made up of an atypical fibro‐lamellar complex displaying an irregular laminar organization and extreme compactness (osteosclerosis). Its development is suggested to have resulted from a protraction of periosteal accretion over the premaxillae, long after the end of somatic growth. Complex shifts in the geometry of this tissue are likely to have occurred during its accretion and no indication of Haversian remodeling could be found. X‐ray diffraction and Raman spectroscopy indicate that the bone matrix in the premaxillary prominence of Globicetus closely resembles that of the rostrum of the extant beaked whale Mesoplodon densirostris: apatite crystals are of common size and strongly oriented, but the collagenous meshwork within bone matrix seems to be extremely sparse. These morphological and structural data are discussed in the light of functional interpretations proposed for the highly unusual and diverse ziphiid rostrum. J. Morphol. 277:1292–1308, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
160.
Clustered regularly interspaced short palindromic repeats (CRISPR), in combination with CRISPR associated (cas) genes, constitute CRISPR-Cas bacterial adaptive immune systems. To generate immunity, these systems acquire short sequences of nucleic acids from foreign invaders and incorporate these into their CRISPR arrays as spacers. This adaptation process is the least characterized step in CRISPR-Cas immunity. Here, we used Pectobacterium atrosepticum to investigate adaptation in Type I-F CRISPR-Cas systems. Pre-existing spacers that matched plasmids stimulated hyperactive primed acquisition and resulted in the incorporation of up to nine new spacers across all three native CRISPR arrays. Endogenous expression of the cas genes was sufficient, yet required, for priming. The new spacers inhibited conjugation and transformation, and interference was enhanced with increasing numbers of new spacers. We analyzed ∼350 new spacers acquired in priming events and identified a 5′-protospacer-GG-3′ protospacer adjacent motif. In contrast to priming in Type I-E systems, new spacers matched either plasmid strand and a biased distribution, including clustering near the primed protospacer, suggested a bi-directional translocation model for the Cas1:Cas2–3 adaptation machinery. Taken together these results indicate priming adaptation occurs in different CRISPR-Cas systems, that it can be highly active in wild-type strains and that the underlying mechanisms vary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号