首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   2篇
  84篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   8篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1987年   1篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
51.
In recent years, xanthine oxidase has emerged as an important target not only for gout but also for cardiovascular and metabolic disorders involving hyperuricemia. Contrary to popular belief, recent clinical trials with uricosurics have demonstrated that enhanced excretion of uric acid is, by itself, not adequate to treat hyperuricemia; simultaneous inhibition of production of uric acid by inhibition of xanthine oxidase is also important. Virtual screening of in-house synthetic library followed by in vitro and in vivo testing led to the identification of a novel scaffold for xanthine oxidase inhibition. In vitro activity results corroborated the results from molecular docking studies of the virtual screening hits. The isocytosine scaffold maintains key hydrogen bonding and pi-stacking interactions in the deep end of the xanthine-binding pocket, which anchors it in an appropriate pose to inhibit binding of xanthine and shows promise for further lead optimization using structure-based drug design approach.  相似文献   
52.

Background

Studies in populations unexposed to folic acid (FA) fortification have demonstrated that MTHFR C677T polymorphism is associated with increased risk of higher grades of cervical intraepithelial neoplasia (CIN 2+). However, it is unknown whether exposure to higher folate as a result of the FA fortification program has altered the association between MTHFR C677T and risk of CIN, or the mechanisms involved with such alterations. The current study investigated the following in a FA fortified population: 1) The association between MTHFR C677T polymorphism and risk of CIN 2+; 2) The modifying effects of plasma folate concentrations on this association; and 3) The modifying effects of plasma folate on the association between the polymorphism and degree of methylation of long interspersed nucleotide elements (L1s), in peripheral blood mononuclear cell (PBMC) DNA, a documented biomarker of CIN risk.

Methods

The study included 457 US women diagnosed with either CIN 2+ (cases) or ≤ CIN 1 (non-cases). Unconditional logistic regression models were used to test the associations after adjusting for relevant risk factors for CIN.

Results

The 677CT/TT MTHFR genotypes were not associated with the risk of CIN 2+. Women with CT/TT genotype with lower folate, however, were more likely to be diagnosed with CIN 2+ compared to women with CT/TT genotype with higher folate (OR = 2.41, P = 0.030). Women with CT/TT genotype with lower folate were less likely to have a higher degree of PBMC L1 methylation compared to women with CT/TT genotype with higher folate (OR = 0.28, P = 0.017).

Conclusions

This study provides the first evidence that the MTHFR 677CT/TT genotype-associated lower degree of PBMC L1 methylation increases the risk of CIN 2+ in women in the US post-FA fortification era. Thus, even in the post-FA fortification era, not all women have adequate folate status to overcome MTHFR 677CT/TT genotype-associated lower degree of L1 methylation.  相似文献   
53.
Mulakala C  Reilly PJ 《Proteins》2005,60(4):598-605
Hypocrea jecorina (formerly Trichoderma reesei) Cel7A has a catalytic domain (CD) and a cellulose-binding domain (CBD) separated by a highly glycosylated linker. Very little is known of how the 2 domains interact to degrade crystalline cellulose. Based on the interaction energies and forces on cello-oligosaccharides computationally docked to the CD and CBD, we propose a molecular machine model, where the CBD wedges itself under a free chain end on the crystalline cellulose surface and feeds it to the CD active site tunnel. Enzyme-substrate interactions produce the forces required to pull cellulose chains from the surface and also to help the enzyme move on the cellulose chain for processive hydrolysis. The energy to generate these forces is ultimately derived from the chemical energy of glycosidic bond breakage.  相似文献   
54.
Rice (Oryza sativa L.) is a salt-sensitive species. Salt stress can cause injury to the plant cellular membrane. Plant lipid transfer proteins (LTPs) are abundant lipid binding proteins that are important in membrane vesicle biogenesis and trafficking, however, the biological importance of LTPs on salt-stress response in rice remains unclear. Therefore, salt-responsive rice LTPs were identified and characterized in this study. Microarray analysis showed seven genes positively regulated by salinity, including five Ltp genes (LtpII.3, LtpII.5, LtpII.6, LtpV.1, and LtpV.2) and two Ltp-like (LtpL; LtpL1, and LtpL2) genes. Amino acid alignment revealed that all these Ltp and LtpL genes contained the N-terminal signal peptide. Apart from LtpL1, all salt-inducible Ltp genes had the conserved eight cysteine residue motifs backbone. Verification of gene expression to different stimuli in rice seedlings revealed that salt-regulated Ltp genes differentially responded to drought, cold, H2O2, abscisic acid (ABA) and CaCl2. Furthermore, the expression of Ltp and LtpL genes was tissue-specifically regulated by ABA-dependent and independent pathway. In silico analysis of a 1.5-kb 5’-upstream region of these genes showed regulatory cis-elements associated with ABA, calcium, and cold/drought responses. Three LtpII subfamily genes, including LtpII.3, LtpII.5, and LtpII.6, were strictly expressed in flowers and seeds, and LtpIII.1 mRNA strongly accumulated in stem tissue. Subcellular localization analysis of LTP-DsRed fusion proteins revealed that the five LTPs and two LTPLs localized at the endoplasmic reticulum. The results provide new clues to further understanding the biological functions of Ltp genes.  相似文献   
55.
56.
Differential regulation of Brn3b is essential for the Retinal Ganglion Cell (RGC) development in the two phases of retinal histogenesis. This biphasic Brn3b regulation is required first, during early retinal histogenesis for RGC fate specification and secondly, during late histogenesis, where Brn3b is needed for RGC axon guidance and survival. Here, we have looked into how the regulation of Brn3b at these two stages happens. We identified two miRNAs, miR‐23a and miR‐374, as regulators of Brn3b expression, during the early stage of RGC development. Temporal expression pattern of miR‐23a during E10–19, PN1–7, and adult retina revealed an inverse relation with Brn3b expression. Though miR‐374 did not show such a pattern, its co‐expression with miR‐23a evidently inhibited Brn3b. We further substantiated these findings by ex vivo overexpression of these miRNAs in E14 mice retina and found that miR‐23a and miR‐374 together brings about a change in Brn3b expression pattern in ganglion cell layer (GCL) of the developing retina. From our results, it appears that the combined expression of these miRNAs could be regulating the timing of the wave of Brn3b expression required for early ganglion cell fate specification and later for its survival and maturation into RGCs. Taken together, here we provide convincing evidences for the existence of a co‐ordinated mechanism by miRNAs to down regulate Brn3b that will ultimately regulate the development of RGCs from their precursors. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1155–1171, 2014  相似文献   
57.
Histotechnological processing of DNA can cause damage to and loss of DNA and can change its structure. DNA probes have severe tissue-staining limitations. New DNA probes and improved histotechnology are needed to enhance the characterization of fixed tissue-bound DNA. Our team developed a novel DNA staining technique and histotechnological processing procedure that improves tissue-bound DNA retention and the qualification and quantification of intact double-stranded (ds)-B-DNA. We used the ultrasensitive PicoGreen ds-DNA probe for the histochemical characterization of ds-DNA. Fifteen fixatives were examined to determine which were best for preventing DNA denaturation and retaining original DNA content and structures. Our use of a microwave-vacuum oven reduced heating temperatures, shortened heating and processing times, and enhanced fixation. We achieved better qualitative and quantitative results by using superior tissue-acquisition techniques (e.g., reduced prefixation times) and improved histotechnology. We also compared our novel approach with archival tissues, delayed fixation, less sophisticated and conventional histological processing techniques, and by experimenting with preservation of tissue-bound ds-Z-DNA. Results demonstrate that our histotechnological procedure and nucleic acid staining method significantly improve the retention of intact, undamaged ds-DNA which, in turn, allows the investigator to more precisely quantify the content and structures of unaltered and undamaged tissue-bound ds-B-DNA.  相似文献   
58.
59.
60.
Screening salt-sensitive mutants is a powerful method to identify genes associated with salt tolerance. We used forward genetic screening with sodium azide-mutated rice (Oryza sativa L. cv. Tainung 67) to identify mutants showing hypersensitivity to salt stress. A new mutant line, named salt hypersensitive 1 (shs1) and exhibiting a severe salt-sensitivity when grown under a high NaCl concentration, was identified; the salt hypersensitivity was caused by duplicate recessive epistasis with mutations likely in two different loci. The shs1 salt sensitive phenotypes included a decreased seed germination rate, reduced shoot height and root length, severe and quick wilting, and overaccumulation of sodium ions in shoots as compared with wild-type plants. In addition, shs1 showed a decreased photosynthetic efficiency and enhanced hydrogen peroxide (H2O2) production under the salt stress. An increased superoxide dismutase activity and decreased catalase activity were responsible for the hyperaccumulation of H2O2 in shs1. The hypersensitivity of shs1 to the salt stress might be caused by an impaired antioxidant machinery and cellular Na+ homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号