首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1297篇
  免费   69篇
  2023年   9篇
  2022年   14篇
  2021年   29篇
  2020年   21篇
  2019年   17篇
  2018年   20篇
  2017年   18篇
  2016年   27篇
  2015年   50篇
  2014年   44篇
  2013年   75篇
  2012年   102篇
  2011年   71篇
  2010年   42篇
  2009年   46篇
  2008年   65篇
  2007年   49篇
  2006年   61篇
  2005年   54篇
  2004年   60篇
  2003年   39篇
  2002年   51篇
  2001年   25篇
  2000年   33篇
  1999年   22篇
  1998年   14篇
  1997年   7篇
  1996年   14篇
  1995年   9篇
  1994年   8篇
  1992年   22篇
  1991年   24篇
  1990年   12篇
  1989年   18篇
  1988年   15篇
  1987年   20篇
  1986年   15篇
  1985年   19篇
  1984年   11篇
  1983年   12篇
  1982年   6篇
  1980年   14篇
  1979年   12篇
  1978年   7篇
  1976年   8篇
  1974年   7篇
  1972年   5篇
  1971年   6篇
  1966年   5篇
  1965年   4篇
排序方式: 共有1366条查询结果,搜索用时 140 毫秒
31.
Alkylation-induced germ cell mutagenesis in the mouse versus Drosophila is compared based on data from forward mutation assays (specific-locus tests in the mouse and in Drosophila and multiple-locus assays in the latter species) but not including assays for structural chromosome aberrations. To facilitate comparisons between mouse and Drosophila, forward mutation test results have been grouped into three categories. Representatives of the first category are MMS (methyl methanesulfonate) and EO (ethylene oxide), alkylating agents with a high s value which predominantly react with ring nitrogens in DNA. ENU (N-ethyl-N-nitrosourea), MNU (N-methyl-N-nitrosourea), PRC (procarbazine), DEN (N-nitrosodiethylamine), and DMN (N-nitrosodimethylamine) belong to the second category. These agents have in common a considerable ability for modification at oxygens in DNA. Cross-linking agents (melphalan, chlorambucil, hexamethylphosphoramide) from the third category.The most unexpected, but encouraging outcome of this study is the identification of common features for three vastly different experimental indicators of genotoxicity: hereditary damage in Drosophila males, genetic damage in male mice, and tumors (TD50 estimates) in rodents. Based on the above three category classification scheme the following tentative conclusions are drawn. Monofunctional agents belonging to category 1, typified by MMS and EO, display genotoxic effects in male germ cell stages that have passed meiotic division. This phenomenon seems to be the consequence of a repair deficiency during spermiogenesis for a period of 3–4 days in Drosophila and 14 days in the mouse. We suggest that the reason for the high resistance of premeiotic stages, and the generally high TD50 estimates observed for this class in rodents, is the efficient error-free repair of N-alkylation damage. If we accept this hypothesis, then the increased carcinogenic potential in rodents, seen when comparing category 2 (ENU-type mutagens) to category 1 (MMS-type mutagens), along with the ability of category 2 genotoxins to induce genetic damage in premeiotic stages, must presumably be due to their enhanced ability for alkylations at oxygens in DNA; it is this property that actually distinguishes the two groups from each other. In contrast to category 1, examination of class 2 genotoxins (ENU and DEN) in premeiotic cells of Drosophila gave no indication for a significant role of germinal selection, and also removal by DNA repair was less dramatic compared to MMS. Thus category 2 mutagens are expected to display activity in a wide range of both post- and premeiotic germ cell stages. A number of these agents have been demonstrated to be among the most potent carcinogens in rodents. In terms of both hereditary damage and the initiation of cancers (low TD50), cross-linking agents (category 3) comprise a considerable genotoxic hazard. Doubling doses for the mouse SLT have been determined for four cross-linking agents not requiring metabolic conversion and in all four cases the doubling doses for these agents were lower than those for MMS, DES and EMS. In support of this conclusion, two of 10 genotoxic agents, for which data on chromosomal aberrations were available for both somatic cells and germ cells in mice, were cross-linking agents and again the doubling dose estimates are lower than for monofunctional agents. Four cross-linking agents induced mutations in stem cell spermatogonia indicating that this type of agent can be active in a wide range of germ cell stages.Quite in contrast to what is generally observed in unicellular systems and in mammalian cells in culture, both cross-linking agents and MMS-type mutagens (high s value) predominantly produce deletion mutations in postmeiotic male germ cell stages. This is the uniform picture found for both Drosophila and the mouse. It is concluded that in vitro systems, in contrast to Drosophila germ cells, fail to predict this very intriguing feature of mouse germ line mutagenesis. In addition to their potential for induction of deletions and other rearrangements, cross-linking agents are among the most efficient inducers of mitotic recombination in Drosophila. Thus there are several mechanisms by which cross-linking agents may cause loss of heterozygosity for long stretches of DNA sequences, leading to expression of recessive genes. Since a substantial portion of agents used in the chemotherapy of cancers have cross-linking potential, the potential hazards of hereditary damage and cancers associated with this class of genotoxins should, in our opinion, receive more attention than they have in the past.  相似文献   
32.
A. T. Natarajan  G. Obe 《Chromosoma》1984,90(2):120-127
Chinese hamster ovary cells (CHO cells) and mouse fibroblasts (PG 19) were permeabilized with inactivated Sendai virus, treated with different types of restriction endonucleases (Eco RV, Pvu II, Bam HI, Sma I, Asu III, Nun II), and studied for the occurrence of chromosomal aberrations at different times following treatment. The pattern of chromosomal aberrations observed was similar to that induced by ionizing radiations. Restriction endonucleases that induce blunt double-strand breaks (Eco RV, Pvu II) were more efficient in inducing chromosomal aberrations than those that induce breaks with cohesive ends (Bam HI, Nun II, Asu III). Ring types were very frequent among the aberrations induced by restriction enzymes. Cytosine arabinoside, an inhibitor of DNA repair, was found to increase the frequencies of aberrations induced by restriction enzymes, indicating its effect on ligation of double-strand breaks. The relevance of these results to the understanding of the mechanisms of chromosomal aberration formation following treatment with ionizing radiations is discussed.  相似文献   
33.
Summary The effect of co-cultivation of Bloom's syndrome fibroblasts with Chinese hamster ovary cells (CHO) on the incidence of sister chromatid exchanges (SCEs) was studied. The results show that suppression of the frequency of SCEs in Bloom's syndrome cells occurs only if cell to cell contact is present with CHO cells, without any effect on the SCE frequency in the latter.It is suggested that possible genetic heterogeneity between different Bloom's syndrome patients can be studied using the method of co-cultivation.  相似文献   
34.
35.
The frequency of chromatid breaks associated with sister chromatid exchanges at the break point was determined in rat bone marrow cells treated in vivo with 7–12 DMBA, during the late S phase of the cell cycle. The chromosomal aberrations and SCEs were scored in the same cells. Under the experimental conditions employed, more than 40% of the chromatid breaks were found to be associated with an SCE, a frequency expected according to Revell's hypothesis for the formation of chromatid breaks.  相似文献   
36.
S Chandrasekhar 《Microbios》1978,22(87):27-34
A relation was sought between acid phosphatase contents and the presence of tubercle bacilli inside the peritoneal exudate cells (PEC) of normal guinea pigs and those immunized with BCG. This was done to investigate the role lysosomal enzymes play in the microbicidal capacity of the cell. In both normal and immune animals tubercle bacilli were present only in those PEC that contained acid phosphatase. Cells without acid phosphatase did not contain bacilli. Thus, only activated cells ingested bacilli. Under the conditions of these experiments, macrophage activation, as indicated by the presence of acid phosphatase, was not related to the immune status of the animal. Similarly, stimulation by ingestion of tubercle bacilli was not significant. Also, the number of acid phosphatase grains/cell did not influence the number of bacilli/cell. Thus, the acid phosphatase content of the cell did not correlate with the number of bacilli inside the cell. It was concluded that acid phosphatase may not be one of the factors that contribute to the microbicidal capacity of the cell.  相似文献   
37.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   
38.
Interleukin-1 (IL-1) plays an important role in cartilage destruction associated with inflammatory and degenerative arthritis because of its ability to induce matrix degrading enzymes. Previously, we have shown that the IL-1-induced chondrocyte protease activity was inhibited by transforming growth factor-β (TGF-β). In this paper, we show that TGF-β inhibits the IL-1-induced synthesis of collagenase and stromelysin by reducing the steady-state mRNA levels in rabbit articular chondrocytes. We further demonstrate that TGF-β-treated chondrocytes show reduced 125I-IL-1 binding that returns to a normal level when TGF-β is removed from the culture medium. The inhibitory effect of TGF-β is observed for both naturally occurring as well as fibroblast growth factor (FGF)-inducible binding sites (receptors). Scatchard analysis of receptor—ligand interactions demonstrate that the reduced binding is due to a reduction in the number of receptors for IL-1 and is not due to changes in affinity. Affinity cross-linking studies suggest that control chondrocytes contain two major cross-linked bands of Mr =116 and 80 kDa and a minor band of Mr =100 kDa. FGF-treated cells show enhanced levels of all the bands, plus an additional 200-kDa band. TGF-β treatment of chondrocytes results in the reduction of all of these bands in both control as well as FGF-induced cells. These observations suggest that the ability of TGF-β to down-regulate the IL-1 receptor may be a mechanism by which it exerts its effects in antagonizing the IL-1 activity on chondrocytes.  相似文献   
39.
A modified mouse splenocyte culture system was standardized after testing different mitogens (i.e., phytohemagglutinin (PHA), concanavalin A (Con A)). The mitotic index was determined for comparison between different mitogens. Following selection of appropriate mitogen (PHA 16, Flow), a series of experiments were conducted to evaluate the application of a cytokinesis-block for scoring micronuclei and assays for chromosomal aberrations produced by treatment in G0 and G2 for the purposes of biological dosimetry following in vivo and/or in vitro exposure to X-rays, fission neutrons and bleomycin. In the X-irradiation studies, the frequencies of micronuclei and chromosomal aberrations (i.e., dicentrics and rings) increased in a dose-dependent manner. These data could be fitted to a linear-quadratic model. No difference was observed between irradiation in vivo and in vitro, suggesting that measurement of dicentrics and micronuclei in vitro after X-irradiation can be used as an in vivo dosimeter. Following in vivo irradiation with 1 MeV fission neutrons and in vitro culturing of mouse splenocytes, linear dose-response curves were obtained for induction of micronuclei and chromosomal aberrations. The lethal effects of neutrons were shown to be significantly greater than for a similar dose of X-rays. The relative biological effectiveness (RBE) was 6-8 in a dose range of 0.25-3 Gy for radiation-induced asymmetrical exchanges (dicentrics and rings), and about 8 for micronuclei in a dose range of 0.25-2 Gy. Furthermore, the induction of chromosomal aberrations by bleomycin was investigated in mouse G0 splenocytes (in vitro) and compared with X-ray data. Following bleomycin treatment (2 h) a similar pattern of dose-response curve was obtained as with X-rays. In this context a bleomycin rad equivalent of 20 micrograms/ml = 0.50 Gy was estimated.  相似文献   
40.
Phospholipid metabolism was studied in rat sciatic nerve during Wallerian degeneration induced by crush injury. Portions of crushed sciatic nerve, incubated with labeled substrates, showed significantly higher phosphatidylcholine synthesis than normal nerve, prior to any measurable alterations of phospholipid composition. Maximum synthesis occurred 3 days after crush injury, at which time the metabolism of other phospholipids was unchanged. After a rapid decrease in biosynthetic activity, a second phase of enhanced phosphatidylcholine synthesis occurred, beginning 6 days after crush injury. Increased incorporation of [33P]phosphate, [2-3H]glycerol, and [Me-14C]choline indicated stimulation of de novo synthesis of phosphatidylcholine 3 days after injury. Neither base exchange reactions nor sequential methylation of ethanolamine phospholipids contributed significantly to phosphatidylcholine synthesis. Assay of certain key enzymes under optimal conditions in subcellular fractions of sciatic nerve revealed higher activities of cholinephosphate cytidyltransferase, choline phosphotransferase, and acyl-CoA:lysophosphatidylcholine acyltransferase in injured nerve, while choline kinase activity remained unchanged. This indicates that stimulation of phosphatidylcholine synthesis occurs via the cytidine nucleotide pathway, as well as by increased acylation of lysophosphatidylcholine. Although the cause of stimulated phosphatidylcholine synthesis remains unexplained, it is possible that trace amounts of lysophospholipids or other metabolites produced by injury-enhanced phospholipase activity may be responsible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号