首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   27篇
  国内免费   1篇
  2022年   6篇
  2021年   4篇
  2020年   8篇
  2019年   13篇
  2018年   12篇
  2017年   9篇
  2016年   20篇
  2015年   18篇
  2014年   27篇
  2013年   46篇
  2012年   28篇
  2011年   20篇
  2010年   19篇
  2009年   10篇
  2008年   14篇
  2007年   10篇
  2006年   14篇
  2005年   14篇
  2004年   6篇
  2003年   11篇
  2002年   12篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1992年   6篇
  1991年   2篇
  1989年   3篇
  1987年   11篇
  1986年   6篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   3篇
  1967年   2篇
排序方式: 共有434条查询结果,搜索用时 648 毫秒
101.
Mammalian gastric lipases are stable and active under acidic conditions and also in the duodenal lumen. There has been considerable interest in acid stable lipases owing to their potential application in the treatment of pancreatic exocrine insufficiency. In order to gain insights into the domain movements of these enzymes, molecular dynamics simulations of human gastric lipase was performed at an acidic pH and under neutral conditions. For comparative studies, simulation of dog gastric lipase was also performed at an acidic pH. Analyses show, that in addition to the lid region, there is another region of high mobility in these lipases. The potential role of this novel region is discussed.  相似文献   
102.
Aspergillus awamori BTMFW032, isolated from sea water, produced tannase as extracellular enzyme under submerged culture conditions. Enzyme with a specific activity of 2761.89 IU/mg protein, a final yield of 0.51 %, and a purification fold of 6.32 was obtained after purification to homogeneity by ultrafiltration and gel filtration. SDS-PAGE analyses under non- reducing and reducing conditions yielded a single band of 230 kDa and 37.8 kDa, respectively, indicating presence of six identical monomers. pI of 4.4 and 8.02 % carbohydrate content in the enzyme were observed. Optimal temperature was 30oC, although the enzyme was active at 5-80 oC. Two pH optima, pH 2 and pH 8, were recorded and the enzyme was stable only at pH 2.0 for 24 h. Methylgallate recorded maximal affinity and K(m) and V(max) were recorded, respectively, as 1.9 X 10?3 M and 830 micronmol/min. Impact of several metal salts, solvents, surfactants, and typical enzyme inhibitors on tannase activity were determined to establish the novelty of the enzyme. Gene encoding tannase isolated from A. awamori is 1.232 kb and nucleic acid sequence analysis revealed an open reading frame consisting of 1122 bp (374 amino acids) of one stretch in -1 strand. In-silico analyses of gene sequences and comparison with reported sequences of other species of Aspergillus indicated that the acidophilic tannase from marine A. awamori is differs from that of other reported species.  相似文献   
103.
The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.  相似文献   
104.
105.
The serotonin1A (5-HT1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein coupled receptors (GPCRs). We report here that guanine nucleotide sensitivity of agonist binding to hippocampal 5-HT1A receptors is dependent on the concentration of Mg2+. Our results show that agonist binding to 5-HT1A receptors is relatively insensitive to guanine nucleotides in the absence of Mg2+. In contrast to this, the specific antagonist binding is insensitive to guanine nucleotides, even in the presence of Mg2+. These results point out the requirement of an optimal concentration of Mg2+ which could be used in assays toward determining guanine nucleotide sensitivity of ligand binding to GPCRs such as the 5-HT1A receptor. Our results provide novel insight into the requirement and concentration dependence of Mg2+ in relation to guanine nucleotide sensitivity for the 5-HT1A receptor in particular, and GPCRs in general.  相似文献   
106.
Sulfated glycoconjugates regulate biological processes such as cell adhesion and cancer metastasis. We examined the acceptor specificities and kinetic properties of three cloned Gal:3-O-sulfotransferases (Gal3STs) ST-2, ST-3, and ST-4 along with a purified Gal3ST from colon carcinoma LS180 cells. Gal3ST-2 was the dominant Gal3ST in LS180. While the mucin core-2 structure Galbeta1,4GlcNAcbeta1,6(3-O-MeGalbeta1,3)GalNAcalpha-O-Bn (where Bn is benzyl) and the disaccharide Galbeta1,4GlcNAc served as high affinity acceptors for Gal3ST-2 and Gal3ST-3, 3-O-MeGalbeta1,4GlcNAcbeta1,-6(Galbeta1,3)GalNAcalpha-O-Bn and Galbeta1,3GalNAcalpha-O-Al (where Al is allyl) were efficient acceptors for Gal3ST-4. The activities of Gal3ST-2 and Gal3ST-3 could be distinguished with the Globo H precursor (Galbeta1,3GalNAcbeta1,3Galalpha-O-Me) and fetuin triantennary asialoglycopeptide. Gal3ST-2 acted efficiently on the former, while Gal3ST-3 showed preference for the latter. Gal3ST-4 also acted on the Globo H precursor but not the glycopeptide. In support of the specificity, Gal3ST-2 activity toward the Galbeta1,4GlcNAcbeta unit on mucin core-2 as well as the Globo H precursor could be inhibited competitively by Galbeta1,4GlcNAcbeta1,6(3-O-sulfoGalbeta1,3)GalNAcalpha-O-Bn but not 3-O-sulfoGalbeta1,-4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-Bn. Remarkably these sulfotransferases were uniquely specific for sulfated substrates: Gal3ST-3 utilized Galbeta1,4(6-O-sulfo)-GlcNAcbeta-O-Al as acceptor, Gal3ST-2 acted efficiently on Galbeta1,3(6-O-sulfo)GlcNAcbeta-O-Al, and Gal3ST-4 acted efficiently on Galbeta1,3(6-O-sulfo)GalNAcalpha-O-Al. Mg(2+), Mn(2+), and Ca(2+) stimulated the activities of Gal3ST-2, whereas only Mg(2+) augmented Gal3ST-3 activity. Divalent cations did not stimulate Gal3ST-4, although inhibition was noted at high Mn(2+) concentrations. The fine substrate specificities of Gal3STs indicate a distinct physiological role for each enzyme.  相似文献   
107.
X-ray fiber diffraction patterns from deacylated acetan and glucomannan (konjac mannan) blends are diagnostic of good orientation and modest polycrystallinity. The meridional reflection on the sixth layer line suggests that the binary complex is a 6-fold helix of pitch 55.4 A. A molecular modeling study incorporating this information reveals that a double helix in which one strand is acetan and the other glucomannan is stereochemically feasible. While the backbone and side groups are sufficiently flexible to allow the chains to associate with the same or opposite polarity, the parallel model is superior in terms of unit cell packing. The results are compatible with the observed synergy; namely the weak gelation behavior of the complex. The molecular model can be generalized for the binary system when acetan is replaced by xanthan or glucomannan by galactomannan.  相似文献   
108.
Type XIX collagen was discovered from the sequence of rhabdomyosarcoma cDNA clones. The chain is composed of a 268-residue amino terminus, an 832-residue discontinuous collagenous region, and a 19-residue carboxyl peptide. Light microscopy immunohistochemistry of adult human tissues demonstrated that type XIX is localized in vascular, neuronal, mesenchymal, and some epithelial basement membrane zones. It also appears to be involved in events linked to skeletal myogenesis. In this report, we have presented the first direct evidence for the molecular structure of type XIX collagen. Using human umbilical cord, native type XIX was purified by neutral salt extraction and by ion exchange and antibody affinity chromatography. Type XIX was found to represent only approximately 10(-6)% of the dry weight of tissue, making it by far the least abundant collagen ever isolated. Transmission electron microscopy after rotary shadowing revealed the appearance of rodlike structures with multiple sharp bends, a small nodule at one end of the molecule, and a total length of 240 nm. Domain-specific antibodies were used to identify the nodule as the noncollagenous amino terminus, whereas the location of most kinks corresponds to major interruptions separating the five collagenous subdomains. More than half of the type XIX molecules observed were present in oligomers of different size and complexity, resulting from association of the amino-terminal domains. Biochemical analysis demonstrated that these supramolecular aggregates are dependent upon and/or stabilized by intermolecular disulfide cross-links and that the globular amino terminus contains a high affinity, heparin-binding site. The polymorphic conformational states of this rare collagen, and its ability to self-assemble into a higher order structure provide focal points for future determination of biologically significant functions in cell-cell and/or cell-matrix interactions.  相似文献   
109.
The three-dimensional structure of the sodium salt of beijeran has been determined by X-ray fiber diffraction analysis. The acidic polysaccharide forms an extended twofold helix. Two chains are nestled tightly in a monoclinic unit cell of dimensions a=12.72, b=11.41, c (fiber axis)=24.62 A and gamma=123.7 degree in an antiparallel fashion. In the crystalline lattice, helices are stacked tightly to form a thick sheet along the vertical plane passing through the short diagonal of the basal net. Adjacent sheets associate via a network of sodium ions and water molecules embedded between them. The morphology of sodium beijeran in the solid state is consistent with its observed rheological properties.  相似文献   
110.
Our recent studies have revealed the existence of two distinct Gal: 3-O-sulfotransferases capable of acting on the C-3 position of galactose in a Core 2 branched structure, e.g., Gal14GlcNAc16(Gal13)GalNac1OBenzyl as acceptor to give 3-O-sulfoGal14GlcNAc13(Gal13)GalNAc1OB 20 and Gal14GlcNAc16(3-O-sulfoGal13)GalNAc1OB 23. We herein report the synthesis of these two compounds and also that of other modified analogs that are highly specific acceptors for the two sulfotransferases. Appropriately protected 1-thio-glycosides 7, 8, and 10 were employed as glycosyl donors for the synthesis of our target compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号