首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   26篇
  国内免费   1篇
  433篇
  2022年   8篇
  2021年   2篇
  2020年   8篇
  2019年   11篇
  2018年   11篇
  2017年   9篇
  2016年   18篇
  2015年   15篇
  2014年   26篇
  2013年   46篇
  2012年   32篇
  2011年   21篇
  2010年   20篇
  2009年   11篇
  2008年   14篇
  2007年   10篇
  2006年   14篇
  2005年   14篇
  2004年   7篇
  2003年   10篇
  2002年   12篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1992年   6篇
  1991年   2篇
  1989年   3篇
  1987年   11篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   3篇
  1967年   2篇
排序方式: 共有433条查询结果,搜索用时 15 毫秒
101.
Tetrathiomolybdate has been used as an efficient sulfur-transfer reagent in the synthesis of a number of thiolevomannosan derivatives having an axial-rich 1C4 conformation. An unprecedented synthesis of a novel thioorthoester and its synthetic utility in glycosylation has been demonstrated. This is a general and efficient method for the synthesis of conformationally locked thiosugars.  相似文献   
102.
The antimicrobial activity of the N-[5-(2-furanyl)-2-methyl-4-oxo-4H-theino[2,3-d]pyrimidin-3-y1]-carboxamides and 3-substituted-5-(2-furanyl)-2-methyl-3H-thieno[2,3-d]pyrimidin-4-ones was correlated with different topological indices using Hansch analysis. Good correlations were obtained through a simple regression equation with third order molecular connectivity index (3chi). The developed QSAR models were crossvalidated by leave-one-out technique.  相似文献   
103.
We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from −1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical conformation in the presence of negatively charged lipid vesicles. In helical conformation, their average hydrophobic moment and hydrophobicity would render them surface-active. The composition of amino acids on the polar face of the helix in the peptides is considerably different. The peptides show variations in their ability to permeabilise zwitterionic and anionic lipid vesicles. Whereas increased net positive charge favours greater permeabilisation, the distribution of charged residues in the polar face also plays a role in determining membrane activity. The distribution of amino acids in the polar face of the helix in the peptides that were investigated do not fall into the canonical classes described. Amphipathic helices, which are part of proteins, with a pattern of amino acid distribution different from those observed in class L, A and others, could help in providing newer insights into peptide-membrane interactions.  相似文献   
104.

Background

A rapid and specific test is urgently needed for tuberculosis (TB) diagnosis especially among human immunodeficiency virus (HIV) infected individuals. In this study, we assessed the sensitivity of Interferon gamma release assay (IGRA) in active tuberculosis patients who were positive for HIV infection and compared it with that of tuberculin skin test (TST).

Methodology/Principal Findings

A total of 105 HIV-TB patients who were naïve for anti tuberculosis and anti retroviral therapy were included for this study out of which 53 (50%) were culture positive. Of 105 tested, QuantiFERON-TB Gold in-tube (QFT-G) was positive in 65% (95% CI: 56% to 74%), negative in 18% (95% CI: 11% to 25%) and indeterminate in 17% (95% CI: 10% to 24%) of patients. The sensitivity of QFT-G remained similar in pulmonary TB and extra-pulmonary TB patients. The QFT-G positivity was not affected by low CD4 count, but it often gave indeterminate results especially in individuals with CD4 count <200 cells/µl. All of the QFT-G indeterminate patients whose sputum culture were positive, showed ≤0.25 IU/ml of IFN-γ response to phytohemagglutinin (PHA). TST was performed in all the 105 patients and yielded the sensitivity of 31% (95% CI: 40% to 22%). All the TST positives were QFT-G positives. The sensitivity of TST was decreased, when CD4 cell counts declined.

Conclusions/Significance

Our study shows neither QFT-G alone or in combination with TST can be used to exclude the suspicion of active TB disease. However, unlike TST, QFT-G yielded fewer false negative results even in individuals with low CD4 count. The low PHA cut-off point for indeterminate results suggested in this study (≤0.25 IU/ml) may improve the proportion of valid QFT-G results.  相似文献   
105.
Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5Acα2-3Gal linked (α2-3) to Neu5Acα2-6Gal linked (α2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of α2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to α2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.  相似文献   
106.
Mammalian gastric lipases are stable and active under acidic conditions and also in the duodenal lumen. There has been considerable interest in acid stable lipases owing to their potential application in the treatment of pancreatic exocrine insufficiency. In order to gain insights into the domain movements of these enzymes, molecular dynamics simulations of human gastric lipase was performed at an acidic pH and under neutral conditions. For comparative studies, simulation of dog gastric lipase was also performed at an acidic pH. Analyses show, that in addition to the lid region, there is another region of high mobility in these lipases. The potential role of this novel region is discussed.  相似文献   
107.
Aspergillus awamori BTMFW032, isolated from sea water, produced tannase as extracellular enzyme under submerged culture conditions. Enzyme with a specific activity of 2761.89 IU/mg protein, a final yield of 0.51 %, and a purification fold of 6.32 was obtained after purification to homogeneity by ultrafiltration and gel filtration. SDS-PAGE analyses under non- reducing and reducing conditions yielded a single band of 230 kDa and 37.8 kDa, respectively, indicating presence of six identical monomers. pI of 4.4 and 8.02 % carbohydrate content in the enzyme were observed. Optimal temperature was 30oC, although the enzyme was active at 5-80 oC. Two pH optima, pH 2 and pH 8, were recorded and the enzyme was stable only at pH 2.0 for 24 h. Methylgallate recorded maximal affinity and K(m) and V(max) were recorded, respectively, as 1.9 X 10?3 M and 830 micronmol/min. Impact of several metal salts, solvents, surfactants, and typical enzyme inhibitors on tannase activity were determined to establish the novelty of the enzyme. Gene encoding tannase isolated from A. awamori is 1.232 kb and nucleic acid sequence analysis revealed an open reading frame consisting of 1122 bp (374 amino acids) of one stretch in -1 strand. In-silico analyses of gene sequences and comparison with reported sequences of other species of Aspergillus indicated that the acidophilic tannase from marine A. awamori is differs from that of other reported species.  相似文献   
108.
Identification of Mycobacterium tuberculosis antigens inducing cellular immune responses is required to improve the diagnosis of and vaccine development against tuberculosis. To identify the antigens of M. tuberculosis that differentiated between tuberculosis (TB) patients and healthy contacts based on T cell reactivity, the culture filtrate of in vitro grown M. tuberculosis was fractionated by two-dimensional liquid phase electrophoresis and tested for the ability to stimulate T cells in a whole blood assay. This approach separated the culture filtrate into 350 fractions with sufficient protein quantity (at least 200 μg of protein) for mass spectrometry and immunological analyses. High levels of interferon-γ (IFN-γ) secretion were induced by 105 fractions in healthy contacts compared with TB patients (p < 0.05). Most interesting was the identification of 10 fractions that specifically induced strong IFN-γ production in the healthy contact population but not in TB patients. Other immunological measurements showed 42 fractions that induced significant lymphocyte proliferative responses in the healthy contact group compared with the TB patients. The tumor necrosis factor-α response for most of the fractions did not significantly differ in the tested groups, and the interleukin-4 response was below the detectable range for all fractions and both study groups. Proteomic characterization of the 105 fractions that induced a significant IFN-γ response in the healthy contacts compared with the TB patients led to the identification of 59 proteins of which 24 represented potentially novel T cell antigens. Likewise, the protein identification in the 10 healthy “contact-specific fractions” revealed 16 proteins that are key candidates as vaccine or diagnostic targets.Tuberculosis (TB)1 is a major health problem throughout the world. A recent World Health Organization report shows that TB has been increasing at a rate of 1% per year, and an estimated 9.2 million new cases arise each year (1). Although TB is preventable, there has been an increase in its incidence in recent years. Re-emergence of TB is mainly due to its association with human immunodeficiency virus infection (2) and also due to the occurrence of multidrug-resistant strains of the causative agent, Mycobacterium tuberculosis (3).Vaccination of general population is cost effective and represents one of the best biological measures for disease control. The current vaccine against tuberculosis, Bacille Calmette-Guérin (BCG), has been administered to more people than any other vaccine. The side effects of BCG are tolerable, and it prevents miliary and meningeal tuberculosis in young children. In striking contrast, it affords limited and highly variable protection (0–80%) against pulmonary TB (4). Thus, BCG does not seem to be a satisfactory vaccine (5, 6) and necessitates exploration of newer strategies to improve BCG or to develop a more effective vaccine.One of the potential strategies for the development of an improved TB vaccine involves the use of the proteins secreted by M. tuberculosis during growth. There is evidence that proteins actively secreted by M. tuberculosis during growth induce cell-mediated immune responses by causing expansion of specific interferon-γ (IFN-γ)-producing T lymphocytes that are capable of recognizing and exerting antimicrobial effects against infected macrophages (7). The importance of IFN-γ pathways in host defense against M. tuberculosis was clarified by experimental studies on IFN-γ knock-out mice as well as the identification and characterization of humans with mutations in IFN-γ receptor (8, 9).Several studies have been carried out to define the secreted proteome of M. tuberculosis. The earliest study aimed at the identification of mycobacterial culture filtrate proteins, using chromatography and N-terminal sequencing to identify eight culture filtrate proteins (10). Later, many studies used two-dimensional (2D) PAGE combined with sensitive mass spectrometric methods for identification of proteins. The above mentioned approaches have identified nearly 300 culture filtrate proteins (1113).Identification of T cell antigens in a complex mixture was first done by a T cell Western blot method (14). Later, two-dimensional separation methods were used that involved protein separation by either IEF (15) or chromatography (16) in the first dimension and preparative SDS-PAGE followed by whole gel elution (17) in the second dimension. Mouse T cell antigens of M. tuberculosis were identified using this method (15). Mycobacterial antigens that induce an immune response in healthy household contacts and treated TB patients were also mapped using this approach (16).In the present study, 2D liquid phase electrophoresis (LPE) along with an in vitro IFN-γ assay and LC-MS/MS were used to identify potential human T cell antigens. Systematic screening of the M. tuberculosis culture filtrate (CF) proteome and comparative evaluation of cellular immune responses between TB patients and healthy contacts led to the identification of 59 proteins in the most immunogenic 2D LPE fractions. Twenty-four potentially novel T cell antigens were identified, and 16 proteins were identified in 10 2D LPE fractions that differentiated healthy contacts from TB patients based on IFN-γ responses.  相似文献   
109.
The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号