首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   14篇
  370篇
  2023年   1篇
  2022年   5篇
  2021年   14篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   9篇
  2015年   12篇
  2014年   15篇
  2013年   31篇
  2012年   28篇
  2011年   24篇
  2010年   14篇
  2009年   10篇
  2008年   24篇
  2007年   23篇
  2006年   25篇
  2005年   19篇
  2004年   11篇
  2003年   15篇
  2002年   17篇
  2001年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
  1974年   2篇
  1972年   3篇
  1970年   1篇
  1969年   3篇
  1967年   1篇
  1965年   1篇
排序方式: 共有370条查询结果,搜索用时 0 毫秒
141.
Redox signals in wound healing   总被引:1,自引:0,他引:1  
Physical trauma represents one of the most primitive challenges that threatened survival. Healing a problem wound requires a multi-faceted comprehensive approach. First and foremost, the wound environment will have to be made receptive to therapies. Second, the appropriate therapeutic regimen needs to be identified and provided while managing systemic limitations that could secondarily limit the healing response. Unfortunately, most current solutions seem to aim at designing therapeutic regimen with little or no consideration of the specific details of the wound environment and systemic limitations. One factor that is centrally important in making the wound environment receptive is correction of wound hypoxia. Recent work have identified that oxygen is not only required to disinfect wounds and fuel healing but that oxygen-dependent redox-sensitive signaling processes represent an integral component of the healing cascade. Over a decade ago, it was proposed that in biological systems oxidants are not necessarily always the triggers for oxidative damage and that oxidants such as H(2)O(2) could actually serve as signaling messengers and drive several aspects of cellular signaling. Today, that concept is much more developed and mature. Evidence supporting the role of oxidants such as H(2)O(2) as signaling messenger is compelling. A complete understanding of the continuum between the classical and emergent roles of oxygen requires a thorough consideration of current concepts in redox biology. The objective of this review is to describe our current understanding of how redox-sensitive processes may drive dermal tissue repair.  相似文献   
142.
Cervical cancer is a leading cause of cancer-related deaths among women in India.Human papillomavirus (HPV) infection is the causative agent of cervical cancer; and infection with the high-risk genotypes, predominantly HPV16 and 18,is the biggest risk factor.Vaccines targeting HPV16 and 18 have been found to confer protection in large- scale clinical trials.HPV genotyping has traditionally been carried out to screen the population "at risk" using indirect methods based on polymerase chain reaction (PCR) using consensus primers combined with various DNA hybridization techniques,and often followed by the sequencing of candidate products.Recently,a high-throughput and direct method based on DNA sequencing has been described for HPV genotyping using multiplex pyrosequencing. We present a pilot study on HPV genotyping of cervical cancer and non-malignant cervical samples using multiplex pyrosequencing.Using genomic DNA from cell lines,cervical biopsies,surgical tissues or formalin-fixed,paraffin- embedded tissue samples,we could successfully resolve 6 different HPV types out of the 7 tested,with their prevalence found to be in agreement with earlier reports. We also resolved coinfections with two different HPV types in several samples. An HPV16 genotype with a specific and recurrent sequence variation was observed in 8 cancer samples and one non-malignant sample. We find this technique eminently suited for high-throughput applications,which can be easily extended to large sample cohorts to determine a robust benchmark for HPV genotypes prevalent in India.  相似文献   
143.
High-resolution (11.7 T) cardiac magnetic resonance imaging (MRI) and histological approaches have been employed in tandem to characterize the secondary damage suffered by the murine myocardium following the initial insult caused by ischemia-reperfusion (I/R). I/R-induced changes in the myocardium were examined in five separate groups at the following time points after I/R: 1 h, day 1, day 3, day 7, and day 14. The infarct volume increased from 1 h to day 1 post-I/R. Over time, the loss of myocardial function was observed to be associated with increased infarct volume and worsened regional wall motion. In the infarct region, I/R caused a decrease in end-systolic thickness coupled with small changes in end-diastolic thickness, leading to massive wall thickening abnormalities. In addition, compromised wall thickening was also observed in left ventricular regions adjacent to the infarct region. A tight correlation (r2 = 0.85) between measured MRI and triphenyltetrazolium chloride (TTC) infarct volumes was noted. Our observation that until day 3 post-I/R the infarct size as measured by TTC staining and MRI was much larger than that of the myocyte-silent regions in trichrome- or hematoxylin-eosin-stained sections is consistent with the literature and leads to the conclusion that at such an early phase, the infarct site contains structurally intact myocytes that are functionally compromised. Over time, such affected myocytes were noted to structurally disappear, resulting in consistent infarct sizes obtained from MRI and TTC as well as trichrome and hematoxylin-eosin analyses on day 7 following I/R. Myocardial remodeling following I/R includes secondary myocyte death followed by the loss of cardiac function over time.  相似文献   
144.
We have previously reported that H(2)O(2) is actively generated by cells at the wound site and that H(2)O(2)-driven redox signaling supports wound angiogenesis and healing. In this study, we have standardized a novel and effective electron paramagnetic resonance spectroscopy-based approach to assess the redox environment of the dermal wound site in vivo. Rac2 regulates inducible NADPH oxidase activation and other functional responses in neutrophils. Using Rac2-deficient mice we sought to investigate the significance of Rac2 in the wound-site redox environment and healing responses. Noninvasive measurements of metabolism of topically applied nitroxide (15)N-perdeuterated tempone in murine excisional dermal wounds demonstrated that the wound site is rich in oxidants, the levels of which peak 2 days postwounding in the inflammatory phase. Rac2-deficient mice had threefold lower production of superoxide compared to controls with similar wounds. In these mice, a lower wound-site superoxide level was associated with compromised wound closure. Immunostaining of wound edges harvested during the inflammatory phase showed that the numbers of phagocytic cells recruited to the wound site in Rac2-deficient and control mice were similar, but the amount of lipid peroxidation was significantly lower in Rac2-deficient mice, indicating compromised NADPH oxidase activity. Taken together, the findings of this study support that the wound site is rich in oxidants. Rac2 significantly contributes to oxidant production at the wound site and supports the healing process.  相似文献   
145.
146.
147.
Recent advances in molecular biology combined with the wealth of information generated by the Human Genome Project have fostered the emergence of nutrigenomics, a new discipline in the field of nutritional research. Nutrigenomics may provide the strategies for the development of safe and effective dietary interventions against the obesity epidemic. According to the World Health Organization, more than 60% of the global disease burden will be attributed to chronic disorders associated with obesity by 2020. Meanwhile in the US, the prevalence of obesity has doubled in adults and tripled in children during the past three decades. In this regard, a number of natural dietary supplements and micronutrients have been studied for their potential in weight management. Among these supplements, (–)-hydroxycitric acid (HCA), a natural extract isolated from the dried fruit rind of Garcinia cambogia, and the micronutrient niacin-bound chromium(III) (NBC) have been shown to be safe and efficacious for weight loss. Utilizing cDNA microarrays, we demonstrated for the first time that HCA-supplementation altered the expression of genes involved in lipolytic and adipogenic pathways in adipocytes from obese women and up-regulated the expression of serotonin receptor gene in the abdominal fat of rats. Similarly, we showed that NBC-supplementation up-regulated the expression of myogenic genes while suppressed the expression of genes that are highly expressed in brown adipose tissue in diabetic obese mice. The potential biological mechanisms underlying the observed beneficial effects of these supplements as elucidated by the state-of-the-art nutrigenomic technologies will be systematically discussed in this review.Key Words: Insulin resistance, glucose tolerance factor, supplemental chromium, Garcinia cambogia, (-)-hydroxycitric acid, overweight, obesity, diabetes, cardiovascular disease, nutritional interventions, microarrays, nutrigenomics.  相似文献   
148.
The mechanism by which protein-coding portions of eukaryotic genes came to be separated by long non-coding stretches of DNA, and the purpose for this perplexing arrangement, have remained unresolved fundamental biological problems for three decades. We report here a plausible solution to this problem based on analysis of open reading frame (ORF) length constraints in the genomes of nine diverse species. If primordial nucleic acid sequences were random in sequence, functional proteins that are innately long would not be encoded due to the frequent occurrence of stop codons. The best possible way that a long protein-coding sequence could have been derived was by evolving a split-structure from the random DNA (or RNA) sequence. Results of the systematic analyses of nine complete genome sequences presented here suggests that perhaps the major underlying structural features of split-genes have evolved due to the indigenous occurrence of split protein-coding genes in primordial random nucleotide sequence. The results also suggest that intron-rich genes containing short exons may have been the original form of genes intrinsically occurring in random DNA, and that intron-poor genes containing long exons were perhaps derived from the original intron-rich genes.  相似文献   
149.
In this paper, a novel method of preparation and systematic study of application of low-loss tin oxide (SnO2) nanospheres located at the rear side of crystalline silicon solar cells having partial rear contact have been presented. The improvement in efficiency due to light harvesting through optical scattering of tin oxide nanospheres is significant for thin silicon solar cells. Finite-difference time-domain (FDTD) simulations reveal that embedding of the rear-located nanospheres is necessary for back scattering of light from the rear surface. An analytical electrical model has been developed utilizing the results of optical simulations to estimate the solar cell parameters and efficiency enhancement of solar cells. The model shows that an absolute efficiency enhancement of ~19% can be achieved for 16% efficient 10-μm thin silicon solar cell with partial rear contact. The enhancement is lower (~6%) for thicker (180 μm) partial rear contact cells. Experimentally, SnO2 nanospheres have been synthesized and applied at the rear side of partial rear contact solar cell as a proof of experiment to validate the potential of this approach. A relative enhancement of short-circuit current by 2.3% and open-circuit voltage by 2.5% has been achieved experimentally for 180-μm silicon solar cells leading to 5.2% higher efficiency with respect to baseline efficiency validating this concept.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号